Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 118757 by mohammad17 last updated on 19/Oct/20

Commented by mohammad17 last updated on 19/Oct/20

with out x=tan θ

$${with}\:{out}\:{x}={tan}\:\theta \\ $$

Answered by mnjuly1970 last updated on 19/Oct/20

(π/4)=^? answer  method 1:   euler reflection formula.  x^2 =t ⇒Ω=(1/2) ∫_0 ^( ∞) (t^((((−1)/2)+1)−1) /((t+1)^2 ))dt    ⇒ Ω=(1/2) β((1/2),(3/2))=(1/2)Γ((1/2))Γ((3/2))  =((1/2))^2 Γ^2 ((1/2))=^(Γ((1/2))=(√π)) (π/4)  ✓✓          ...m.n.july.1970...  ..........  methot 2 :   x=(1/t) ⇒ Ω =∫_0 ^( ∞) (dt/(t^2 (1+(1/t^2 ))^2 ))     =∫_0 ^∞ (((t^2 +1−1))/((1+t^2 )^2 ))dt=(π/2) −Ω  2Ω =(π/2) ⇒ Ω=(π/4)  ✓✓     .m.n.1970..

$$\frac{\pi}{\mathrm{4}}\overset{?} {=}{answer} \\ $$$${method}\:\mathrm{1}: \\ $$$$\:{euler}\:{reflection}\:{formula}. \\ $$$${x}^{\mathrm{2}} ={t}\:\Rightarrow\Omega=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\infty} \frac{{t}^{\left(\frac{−\mathrm{1}}{\mathrm{2}}+\mathrm{1}\right)−\mathrm{1}} }{\left({t}+\mathrm{1}\right)^{\mathrm{2}} }{dt} \\ $$$$\:\:\Rightarrow\:\Omega=\frac{\mathrm{1}}{\mathrm{2}}\:\beta\left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{3}}{\mathrm{2}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right) \\ $$$$=\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \Gamma^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)\overset{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\sqrt{\pi}} {=}\frac{\pi}{\mathrm{4}}\:\:\checkmark\checkmark \\ $$$$\:\:\:\:\:\:\:\:...{m}.{n}.{july}.\mathrm{1970}... \\ $$$$.......... \\ $$$${methot}\:\mathrm{2}\:: \\ $$$$\:{x}=\frac{\mathrm{1}}{{t}}\:\Rightarrow\:\Omega\:=\int_{\mathrm{0}} ^{\:\infty} \frac{{dt}}{{t}^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right)^{\mathrm{2}} } \\ $$$$\:\:\:=\int_{\mathrm{0}} ^{\infty} \frac{\left({t}^{\mathrm{2}} +\mathrm{1}−\mathrm{1}\right)}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt}=\frac{\pi}{\mathrm{2}}\:−\Omega \\ $$$$\mathrm{2}\Omega\:=\frac{\pi}{\mathrm{2}}\:\Rightarrow\:\Omega=\frac{\pi}{\mathrm{4}}\:\:\checkmark\checkmark \\ $$$$\:\:\:.{m}.{n}.\mathrm{1970}.. \\ $$$$ \\ $$

Commented by mohammad17 last updated on 19/Oct/20

yes sir its right

$${yes}\:{sir}\:{its}\:{right} \\ $$

Commented by PRITHWISH SEN 2 last updated on 19/Oct/20

excellent

$$\mathrm{excellent} \\ $$

Commented by mnjuly1970 last updated on 19/Oct/20

thank you

$${thank}\:{you} \\ $$

Commented by mnjuly1970 last updated on 19/Oct/20

 sincerely yours

$$\:{sincerely}\:{yours} \\ $$

Answered by 1549442205PVT last updated on 19/Oct/20

Put x=tanϕ⇒dx=(1+tan^2 ϕ)dϕ  ∫_0 ^∞ (dx/((x^2 +1)^2 ))=∫_0 ^(π/2) (dϕ/((1+tan^2 ϕ)))=∫_0 ^(π/2) cos^2 ϕdϕ  =∫_0 ^(π/2) ((1+cos2ϕ)/2)dϕ=((ϕ/2)+(1/4)sin2ϕ)_0 ^(π/2)   =(π/4)

$$\mathrm{Put}\:\mathrm{x}=\mathrm{tan}\varphi\Rightarrow\mathrm{dx}=\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \varphi\right)\mathrm{d}\varphi \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{d}\varphi}{\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \varphi\right)}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cos}^{\mathrm{2}} \varphi\mathrm{d}\varphi \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}+\mathrm{cos2}\varphi}{\mathrm{2}}\mathrm{d}\varphi=\left(\frac{\varphi}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin2}\varphi\right)_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\frac{\pi}{\mathrm{4}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com