Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 118997 by Lordose last updated on 21/Oct/20

Answered by MJS_new last updated on 21/Oct/20

∫((x^2 −2)/((x^2 +2)^5 ))dx=       [Ostrogradski′s Method]  =−((x(15x^6 +110x^4 +292x^2 +392))/(512(x^2 +2)^4 ))−((15)/(512))∫(dx/(x^2 +2))=  =−((x(15x^6 +110x^4 +292x^2 +392))/(512(x^2 +2)^4 ))−((15(√2))/(1024))arctan (((√2)x)/2) +C

$$\int\frac{{x}^{\mathrm{2}} −\mathrm{2}}{\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{5}} }{dx}= \\ $$$$\:\:\:\:\:\left[\mathrm{Ostrogradski}'\mathrm{s}\:\mathrm{Method}\right] \\ $$$$=−\frac{{x}\left(\mathrm{15}{x}^{\mathrm{6}} +\mathrm{110}{x}^{\mathrm{4}} +\mathrm{292}{x}^{\mathrm{2}} +\mathrm{392}\right)}{\mathrm{512}\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{4}} }−\frac{\mathrm{15}}{\mathrm{512}}\int\frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{2}}= \\ $$$$=−\frac{{x}\left(\mathrm{15}{x}^{\mathrm{6}} +\mathrm{110}{x}^{\mathrm{4}} +\mathrm{292}{x}^{\mathrm{2}} +\mathrm{392}\right)}{\mathrm{512}\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{4}} }−\frac{\mathrm{15}\sqrt{\mathrm{2}}}{\mathrm{1024}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{2}}{x}}{\mathrm{2}}\:+{C} \\ $$

Commented by MJS_new last updated on 21/Oct/20

I used and explained Ostrogradski′s method  several times before, search for “Ostrogradski”  here on the forum, I think you′ll find enough  info there

$$\mathrm{I}\:\mathrm{used}\:\mathrm{and}\:\mathrm{explained}\:\mathrm{Ostrogradski}'\mathrm{s}\:\mathrm{method} \\ $$$$\mathrm{several}\:\mathrm{times}\:\mathrm{before},\:\mathrm{search}\:\mathrm{for}\:``\mathrm{Ostrogradski}'' \\ $$$$\mathrm{here}\:\mathrm{on}\:\mathrm{the}\:\mathrm{forum},\:\mathrm{I}\:\mathrm{think}\:\mathrm{you}'\mathrm{ll}\:\mathrm{find}\:\mathrm{enough} \\ $$$$\mathrm{info}\:\mathrm{there} \\ $$

Commented by Ar Brandon last updated on 21/Oct/20

Sir it seems you deleted it before the arrival of "Her Majesty"�� alongside some other posts. Greetings Sir��

Commented by Lordose last updated on 22/Oct/20

Thanks sire. I also used ostrogradski method to resolve the integral.

Commented by Lordose last updated on 22/Oct/20

Nope. It's still in the forum. I thought you speak French ��

Commented by Ar Brandon last updated on 22/Oct/20

Are you referring to me about speaking French, Lordose ?

Commented by Ar Brandon last updated on 22/Oct/20

I do speak French. By-the-way it's the most spoken language in my country��

Commented by MJS_new last updated on 22/Oct/20

I'm from Austria, my native language is German. I have been speaking English for almost 5 decades now. I learned French in school for 4 years but I never used it and forgot most of it. Reading it I'm able to get the meaning somehow...

Commented by Dwaipayan Shikari last updated on 22/Oct/20

Mozart and Beethoven were Austrian and German

Answered by 1549442205PVT last updated on 22/Oct/20

I_n =∫(dx/((x^2 +a^2 )^n ))=(1/a^2 )∫((a^2 +x^2 −x^2 dx)/((x^2 +a^2 )^n ))  =(1/a^2 )I_(n−1) −(1/a^2 )∫((x.xdx)/((x^2 +a^2 )^5 ))  .Put u=x,dv=((xdx)/([x^2 +a^2 ]^n )),du=dx  ⇒v=(1/(2a^2 ))∫((d(x^2 +a^2 ))/([x^2 +a^2 ]^n ))=  −(1/(2a^2 (n−1))).(1/((x^2 +a^2 )^(n−1) )).Hence  I_n =(1/a^2 )I_(n−1) +(1/a^2 )[(x/(2a^2 (n−1)(x^2 +a^2 )^(n−1) ))−  (1/(2(n−1)))∫(dx/((x^2 +a^2 )^(n−1) ))] or  I_n =(1/a^2 )I_(n−1) +(x/(2a^2 (n−1)(x^2 +a^2 )^(n−1) ))−(1/(2a^2 (n−1)))I_(n−1)   I_n =(x/(2a^2 (n−1)(x^2 +a^2 )^(n−1) ))+(1/(2a^2 )).((2n−3)/(2n−2))I_(n−1)   Apply on the above problem we have  F=∫((x^2 −2)/((x^2 +2)^5 ))dx=∫(dx/((x^2 +2)^4 ))−4∫(dx/((x^2 +2)^5 ))  F=I_4 −4I_5   I_5 =(x/(4.4(x^2 +2)^4 ))+(1/4).(7/8).I_4   ⇒F=I_4 −4I_5 =I_4 −(x/(4(x^2 +2)^4 ))−(7/8)I_4   =−(x/(4(x^2 +2)^4 ))+(1/8)I_4   I_4 =(x/(4.3(x^2 +2)^3 ))+(1/4).(5/6){(x/(4.2(x^2 +2)^2 ))+  (1/4).(3/4)[(x/(4.2(x^2 +2)))+(1/4).(1/2).(1/( (√2)))tan^(−1) (x/( (√2)))]}  =(x/(12(x^2 +2)^3 ))+((5x)/(192(x^2 +2)^2 ))+((15x)/(3072(x^2 +2)))  +((15)/(3072(√2)))tan^(−1) (x/( (√2)))  F=((−x)/(4(x^2 +2)^4 ))+(x/(96(x^2 +2)^3 ))+((5x)/(1536(x^2 +2)^2 ))+  +((15x)/(24576(x^2 +2)))+((15)/( 24576(√2)))tan^(−1) (x/( (√2)))+C

$$\mathrm{I}_{\mathrm{n}} =\int\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{a}^{\mathrm{2}} \right)^{\mathrm{n}} }=\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{2}} }\int\frac{\mathrm{a}^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} \mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{a}^{\mathrm{2}} \right)^{\mathrm{n}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{2}} }\mathrm{I}_{\mathrm{n}−\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{2}} }\int\frac{\mathrm{x}.\mathrm{xdx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{a}^{\mathrm{2}} \right)^{\mathrm{5}} } \\ $$$$.\mathrm{Put}\:\mathrm{u}=\mathrm{x},\mathrm{dv}=\frac{\mathrm{xdx}}{\left[\mathrm{x}^{\mathrm{2}} +\mathrm{a}^{\mathrm{2}} \right]^{\mathrm{n}} },\mathrm{du}=\mathrm{dx} \\ $$$$\Rightarrow\mathrm{v}=\frac{\mathrm{1}}{\mathrm{2a}^{\mathrm{2}} }\int\frac{\mathrm{d}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{a}^{\mathrm{2}} \right)}{\left[\mathrm{x}^{\mathrm{2}} +\mathrm{a}^{\mathrm{2}} \right]^{\mathrm{n}} }= \\ $$$$−\frac{\mathrm{1}}{\mathrm{2a}^{\mathrm{2}} \left(\mathrm{n}−\mathrm{1}\right)}.\frac{\mathrm{1}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{a}^{\mathrm{2}} \right)^{\mathrm{n}−\mathrm{1}} }.\mathrm{Hence} \\ $$$$\mathrm{I}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{2}} }\mathrm{I}_{\mathrm{n}−\mathrm{1}} +\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{2}} }\left[\frac{\mathrm{x}}{\mathrm{2a}^{\mathrm{2}} \left(\mathrm{n}−\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{a}^{\mathrm{2}} \right)^{\mathrm{n}−\mathrm{1}} }−\right. \\ $$$$\left.\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{n}−\mathrm{1}\right)}\int\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{a}^{\mathrm{2}} \right)^{\mathrm{n}−\mathrm{1}} }\right]\:\mathrm{or} \\ $$$$\mathrm{I}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{2}} }\mathrm{I}_{\mathrm{n}−\mathrm{1}} +\frac{\mathrm{x}}{\mathrm{2a}^{\mathrm{2}} \left(\mathrm{n}−\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{a}^{\mathrm{2}} \right)^{\mathrm{n}−\mathrm{1}} }−\frac{\mathrm{1}}{\mathrm{2a}^{\mathrm{2}} \left(\mathrm{n}−\mathrm{1}\right)}\mathrm{I}_{\mathrm{n}−\mathrm{1}} \\ $$$$\boldsymbol{\mathrm{I}}_{\boldsymbol{\mathrm{n}}} =\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}\boldsymbol{\mathrm{a}}^{\mathrm{2}} \left(\boldsymbol{\mathrm{n}}−\mathrm{1}\right)\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{a}}^{\mathrm{2}} \right)^{\boldsymbol{\mathrm{n}}−\mathrm{1}} }+\frac{\mathrm{1}}{\mathrm{2}\boldsymbol{\mathrm{a}}^{\mathrm{2}} }.\frac{\mathrm{2}\boldsymbol{\mathrm{n}}−\mathrm{3}}{\mathrm{2}\boldsymbol{\mathrm{n}}−\mathrm{2}}\boldsymbol{\mathrm{I}}_{\boldsymbol{\mathrm{n}}−\mathrm{1}} \\ $$$$\mathrm{Apply}\:\mathrm{on}\:\mathrm{the}\:\mathrm{above}\:\mathrm{problem}\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{F}=\int\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{2}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{5}} }\mathrm{dx}=\int\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{4}} }−\mathrm{4}\int\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{5}} } \\ $$$$\mathrm{F}=\mathrm{I}_{\mathrm{4}} −\mathrm{4I}_{\mathrm{5}} \\ $$$$\mathrm{I}_{\mathrm{5}} =\frac{\mathrm{x}}{\mathrm{4}.\mathrm{4}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{4}} }+\frac{\mathrm{1}}{\mathrm{4}}.\frac{\mathrm{7}}{\mathrm{8}}.\mathrm{I}_{\mathrm{4}} \\ $$$$\Rightarrow\mathrm{F}=\mathrm{I}_{\mathrm{4}} −\mathrm{4I}_{\mathrm{5}} =\mathrm{I}_{\mathrm{4}} −\frac{\mathrm{x}}{\mathrm{4}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{4}} }−\frac{\mathrm{7}}{\mathrm{8}}\mathrm{I}_{\mathrm{4}} \\ $$$$=−\frac{\mathrm{x}}{\mathrm{4}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{4}} }+\frac{\mathrm{1}}{\mathrm{8}}\mathrm{I}_{\mathrm{4}} \\ $$$$\mathrm{I}_{\mathrm{4}} =\frac{\mathrm{x}}{\mathrm{4}.\mathrm{3}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{4}}.\frac{\mathrm{5}}{\mathrm{6}}\left\{\frac{\mathrm{x}}{\mathrm{4}.\mathrm{2}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} }+\right. \\ $$$$\left.\frac{\mathrm{1}}{\mathrm{4}}.\frac{\mathrm{3}}{\mathrm{4}}\left[\frac{\mathrm{x}}{\mathrm{4}.\mathrm{2}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2}\right)}+\frac{\mathrm{1}}{\mathrm{4}}.\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{x}}{\:\sqrt{\mathrm{2}}}\right]\right\} \\ $$$$=\frac{\mathrm{x}}{\mathrm{12}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{3}} }+\frac{\mathrm{5x}}{\mathrm{192}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} }+\frac{\mathrm{15x}}{\mathrm{3072}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2}\right)} \\ $$$$+\frac{\mathrm{15}}{\mathrm{3072}\sqrt{\mathrm{2}}}\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{x}}{\:\sqrt{\mathrm{2}}} \\ $$$$\mathrm{F}=\frac{−\mathrm{x}}{\mathrm{4}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{4}} }+\frac{\mathrm{x}}{\mathrm{96}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{3}} }+\frac{\mathrm{5x}}{\mathrm{1536}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} }+ \\ $$$$+\frac{\mathrm{15x}}{\mathrm{24576}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2}\right)}+\frac{\mathrm{15}}{\:\mathrm{24576}\sqrt{\mathrm{2}}}\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{x}}{\:\sqrt{\mathrm{2}}}+\mathrm{C} \\ $$

Answered by Bird last updated on 22/Oct/20

I =∫  ((x^2 −2)/((x^2 +2)^5 ))dx ⇒  I?= ∫ ((x^2 −2)/((x−i(√2))^5 (x+i(√2))^5 ))dx  =∫  ((x^2 −2)/((((x−i(√2))/(x+i(√2))))^5 (x+i(√2))^(10) ))dx we do  the chang.((x−i(√2))/(x+i(√2)))=t ⇒x−i(√2)=tx+it(√2)

$${I}\:=\int\:\:\frac{{x}^{\mathrm{2}} −\mathrm{2}}{\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{5}} }{dx}\:\Rightarrow \\ $$$${I}?=\:\int\:\frac{{x}^{\mathrm{2}} −\mathrm{2}}{\left({x}−{i}\sqrt{\mathrm{2}}\right)^{\mathrm{5}} \left({x}+{i}\sqrt{\mathrm{2}}\right)^{\mathrm{5}} }{dx} \\ $$$$=\int\:\:\frac{{x}^{\mathrm{2}} −\mathrm{2}}{\left(\frac{{x}−{i}\sqrt{\mathrm{2}}}{{x}+{i}\sqrt{\mathrm{2}}}\right)^{\mathrm{5}} \left({x}+{i}\sqrt{\mathrm{2}}\right)^{\mathrm{10}} }{dx}\:{we}\:{do} \\ $$$${the}\:{chang}.\frac{{x}−{i}\sqrt{\mathrm{2}}}{{x}+{i}\sqrt{\mathrm{2}}}={t}\:\Rightarrow{x}−{i}\sqrt{\mathrm{2}}={tx}+{it}\sqrt{\mathrm{2}} \\ $$

Commented by Bird last updated on 22/Oct/20

⇒(1−t)x=(1+t)i(√2) ⇒x=i(√2)×((1+t)/(1−t))  (dx/dt)=i(√2)×((1−t+(1+t))/((1−t)^2 )) =((2i(√2))/((1−t)^2 ))  x+i(√2)=i(√(2())((1+t)/(1−t))+1)  =i(√2)×(2/(1−t)) =((2i(√2))/(1−t)) ⇒  I =∫  ((−2(((1+t)/(1−t)))^2 −2)/(t^5 (2i(√2))^(10) ((1/(1−t)))^(10) ))×((2i(√2))/((1−t)^2 ))  =−2(1/((2i(√2))^9 ))∫  (((((1+t)/(1−t)))^2 +1)/(t^5 (1−t)^2 ))×(1−t)^(10)  dt  =−(2/((2i(√2))^9 )) ∫  (((1−t)^8 { (((1+t)^2 )/((1−t)^2 ))+1})/t^5 )dt  =−(2/((2i(√2))^9 ))∫ (((1−t)^8 ((1+t)^2 +(1−t)^2 ))/(t^5 (1−t)^2 ))dt  =((−2)/((2i(√2))^9 ))∫(((1−t)^6 (  t^(2 ) +2t+1+t^2 −2t+1))/t^5 )dt  =((−2)/((2i(√2))^9 ))∫ (((2t^2 +2))/t^5 )Σ_(k=0) ^(6 )  C_6 ^k t^k (−1)^(6−k)   ...be continued...

$$\Rightarrow\left(\mathrm{1}−{t}\right){x}=\left(\mathrm{1}+{t}\right){i}\sqrt{\mathrm{2}}\:\Rightarrow{x}={i}\sqrt{\mathrm{2}}×\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}} \\ $$$$\frac{{dx}}{{dt}}={i}\sqrt{\mathrm{2}}×\frac{\mathrm{1}−{t}+\left(\mathrm{1}+{t}\right)}{\left(\mathrm{1}−{t}\right)^{\mathrm{2}} }\:=\frac{\mathrm{2}{i}\sqrt{\mathrm{2}}}{\left(\mathrm{1}−{t}\right)^{\mathrm{2}} } \\ $$$$\left.{x}+{i}\sqrt{\mathrm{2}}={i}\sqrt{\mathrm{2}\left(\right.}\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}}+\mathrm{1}\right) \\ $$$$={i}\sqrt{\mathrm{2}}×\frac{\mathrm{2}}{\mathrm{1}−{t}}\:=\frac{\mathrm{2}{i}\sqrt{\mathrm{2}}}{\mathrm{1}−{t}}\:\Rightarrow \\ $$$${I}\:=\int\:\:\frac{−\mathrm{2}\left(\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}}\right)^{\mathrm{2}} −\mathrm{2}}{{t}^{\mathrm{5}} \left(\mathrm{2}{i}\sqrt{\mathrm{2}}\right)^{\mathrm{10}} \left(\frac{\mathrm{1}}{\mathrm{1}−{t}}\right)^{\mathrm{10}} }×\frac{\mathrm{2}{i}\sqrt{\mathrm{2}}}{\left(\mathrm{1}−{t}\right)^{\mathrm{2}} } \\ $$$$=−\mathrm{2}\frac{\mathrm{1}}{\left(\mathrm{2}{i}\sqrt{\mathrm{2}}\right)^{\mathrm{9}} }\int\:\:\frac{\left(\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}}\right)^{\mathrm{2}} +\mathrm{1}}{{t}^{\mathrm{5}} \left(\mathrm{1}−{t}\right)^{\mathrm{2}} }×\left(\mathrm{1}−{t}\right)^{\mathrm{10}} \:{dt} \\ $$$$=−\frac{\mathrm{2}}{\left(\mathrm{2}{i}\sqrt{\mathrm{2}}\right)^{\mathrm{9}} }\:\int\:\:\frac{\left(\mathrm{1}−{t}\right)^{\mathrm{8}} \left\{\:\frac{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{\left(\mathrm{1}−{t}\right)^{\mathrm{2}} }+\mathrm{1}\right\}}{{t}^{\mathrm{5}} }{dt} \\ $$$$=−\frac{\mathrm{2}}{\left(\mathrm{2}{i}\sqrt{\mathrm{2}}\right)^{\mathrm{9}} }\int\:\frac{\left(\mathrm{1}−{t}\right)^{\mathrm{8}} \left(\left(\mathrm{1}+{t}\right)^{\mathrm{2}} +\left(\mathrm{1}−{t}\right)^{\mathrm{2}} \right)}{{t}^{\mathrm{5}} \left(\mathrm{1}−{t}\right)^{\mathrm{2}} }{dt} \\ $$$$=\frac{−\mathrm{2}}{\left(\mathrm{2}{i}\sqrt{\mathrm{2}}\right)^{\mathrm{9}} }\int\frac{\left(\mathrm{1}−{t}\right)^{\mathrm{6}} \left(\:\:{t}^{\mathrm{2}\:} +\mathrm{2}{t}+\mathrm{1}+{t}^{\mathrm{2}} −\mathrm{2}{t}+\mathrm{1}\right)}{{t}^{\mathrm{5}} }{dt} \\ $$$$=\frac{−\mathrm{2}}{\left(\mathrm{2}{i}\sqrt{\mathrm{2}}\right)^{\mathrm{9}} }\int\:\frac{\left(\mathrm{2}{t}^{\mathrm{2}} +\mathrm{2}\right)}{{t}^{\mathrm{5}} }\sum_{{k}=\mathrm{0}} ^{\mathrm{6}\:} \:{C}_{\mathrm{6}} ^{{k}} {t}^{{k}} \left(−\mathrm{1}\right)^{\mathrm{6}−{k}} \\ $$$$...{be}\:{continued}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com