Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 119314 by peter frank last updated on 23/Oct/20

Commented by mr W last updated on 23/Oct/20

what is a?

$${what}\:{is}\:{a}? \\ $$

Commented by mr W last updated on 23/Oct/20

or do you mean 3y+a=0?

$${or}\:{do}\:{you}\:{mean}\:\mathrm{3}{y}+{a}=\mathrm{0}? \\ $$

Commented by peter frank last updated on 23/Oct/20

costant

$$\mathrm{costant} \\ $$

Commented by mr W last updated on 23/Oct/20

i know it is a constant, but  what does it mean?

$${i}\:{know}\:{it}\:{is}\:{a}\:{constant},\:{but} \\ $$$${what}\:{does}\:{it}\:{mean}? \\ $$

Commented by peter frank last updated on 23/Oct/20

I  dont know sir

$$\mathrm{I}\:\:\mathrm{dont}\:\mathrm{know}\:\mathrm{sir}\: \\ $$

Answered by mr W last updated on 23/Oct/20

Commented by mr W last updated on 23/Oct/20

say vertex is the origin, the facus is  F(0,h), then the eqn. of parabola is  y=(x^2 /(4h))  say the focal chord is  y=h+mx with m=tan θ    intersection with parabola:  (x^2 /(4h))=h+mx  x^2 −4mhx−4h^2 =0  ⇒x=2h(m±(√(m^2 +1)))    end point A:  x_A =2h(m−(√(m^2 +1)))  y_A =h+2hm(m−(√(m^2 +1)))  tangent at A:  (dy/dx)=(x/(2h))=m−(√(m^2 +1))  y=h+2hm(m−(√(m^2 +1)))+(m−(√(m^2 +1)))[x−2h(m−(√(m^2 +1)))]  0=h+2hm(m−(√(m^2 +1)))+(m−(√(m^2 +1)))[x−2h(m−(√(m^2 +1)))]  ⇒x=x_Q =−(h/(m−(√(m^2 +1))))−2h(√(m^2 +1))    end point B:  x_B =2h(m+(√(m^2 +1)))  y_B =h+2hm(m+(√(m^2 +1)))  tangent at B:  y=h+2hm(m+(√(m^2 +1)))+(m+(√(m^2 +1)))[x−2h(m+(√(m^2 +1)))]  0=h+2hm(m+(√(m^2 +1)))+(m+(√(m^2 +1)))[x−2h(m+(√(m^2 +1)))]  ⇒x=x_R =−(h/(m+(√(m^2 +1))))+2h(√(m^2 +1))    intersection point P:  y=h+2hm(m−(√(m^2 +1)))+(m−(√(m^2 +1)))[x−2h(m−(√(m^2 +1)))]  y=h+2hm(m+(√(m^2 +1)))+(m+(√(m^2 +1)))[x−2h(m+(√(m^2 +1)))]  h[(m+(√(m^2 +1)))^2 −(m−(√(m^2 +1)))^2 ]=(2hm+x)(√(m^2 +1))  ⇒x_P =2mh  ⇒y_P =−h    centroid G:  y_G =(1/3)y_P =−(h/3)=constant  ⇒3y_G +h=0 or 3y+h=0  x_G =(1/3)(x_P +x_Q +x_R )  =(1/3)(2mh−(h/(m−(√(m^2 +1))))−2h(√(m^2 +1))−(h/(m+(√(m^2 +1))))+2h(√(m^2 +1)))  =(h/3)(2m+(1/( (√(m^2 +1))−m))−(1/( (√(m^2 +1))+m)))  =((4mh)/3)≠constant

$${say}\:{vertex}\:{is}\:{the}\:{origin},\:{the}\:{facus}\:{is} \\ $$$${F}\left(\mathrm{0},{h}\right),\:{then}\:{the}\:{eqn}.\:{of}\:{parabola}\:{is} \\ $$$${y}=\frac{{x}^{\mathrm{2}} }{\mathrm{4}{h}} \\ $$$${say}\:{the}\:{focal}\:{chord}\:{is} \\ $$$${y}={h}+{mx}\:{with}\:{m}=\mathrm{tan}\:\theta \\ $$$$ \\ $$$${intersection}\:{with}\:{parabola}: \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{4}{h}}={h}+{mx} \\ $$$${x}^{\mathrm{2}} −\mathrm{4}{mhx}−\mathrm{4}{h}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{x}=\mathrm{2}{h}\left({m}\pm\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$$$ \\ $$$${end}\:{point}\:{A}: \\ $$$${x}_{{A}} =\mathrm{2}{h}\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$$${y}_{{A}} ={h}+\mathrm{2}{hm}\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$$${tangent}\:{at}\:{A}: \\ $$$$\frac{{dy}}{{dx}}=\frac{{x}}{\mathrm{2}{h}}={m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}} \\ $$$${y}={h}+\mathrm{2}{hm}\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)+\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)\left[{x}−\mathrm{2}{h}\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)\right] \\ $$$$\mathrm{0}={h}+\mathrm{2}{hm}\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)+\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)\left[{x}−\mathrm{2}{h}\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)\right] \\ $$$$\Rightarrow{x}={x}_{{Q}} =−\frac{{h}}{{m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}}−\mathrm{2}{h}\sqrt{{m}^{\mathrm{2}} +\mathrm{1}} \\ $$$$ \\ $$$${end}\:{point}\:{B}: \\ $$$${x}_{{B}} =\mathrm{2}{h}\left({m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$$${y}_{{B}} ={h}+\mathrm{2}{hm}\left({m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$$${tangent}\:{at}\:{B}: \\ $$$${y}={h}+\mathrm{2}{hm}\left({m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)+\left({m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)\left[{x}−\mathrm{2}{h}\left({m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)\right] \\ $$$$\mathrm{0}={h}+\mathrm{2}{hm}\left({m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)+\left({m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)\left[{x}−\mathrm{2}{h}\left({m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)\right] \\ $$$$\Rightarrow{x}={x}_{{R}} =−\frac{{h}}{{m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}}+\mathrm{2}{h}\sqrt{{m}^{\mathrm{2}} +\mathrm{1}} \\ $$$$ \\ $$$${intersection}\:{point}\:{P}: \\ $$$${y}={h}+\mathrm{2}{hm}\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)+\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)\left[{x}−\mathrm{2}{h}\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)\right] \\ $$$${y}={h}+\mathrm{2}{hm}\left({m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)+\left({m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)\left[{x}−\mathrm{2}{h}\left({m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)\right] \\ $$$${h}\left[\left({m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)^{\mathrm{2}} −\left({m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right)^{\mathrm{2}} \right]=\left(\mathrm{2}{hm}+{x}\right)\sqrt{{m}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\Rightarrow{x}_{{P}} =\mathrm{2}{mh} \\ $$$$\Rightarrow{y}_{{P}} =−{h} \\ $$$$ \\ $$$${centroid}\:{G}: \\ $$$${y}_{{G}} =\frac{\mathrm{1}}{\mathrm{3}}{y}_{{P}} =−\frac{{h}}{\mathrm{3}}={constant} \\ $$$$\Rightarrow\mathrm{3}{y}_{{G}} +{h}=\mathrm{0}\:{or}\:\mathrm{3}{y}+{h}=\mathrm{0} \\ $$$${x}_{{G}} =\frac{\mathrm{1}}{\mathrm{3}}\left({x}_{{P}} +{x}_{{Q}} +{x}_{{R}} \right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{2}{mh}−\frac{{h}}{{m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}}−\mathrm{2}{h}\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}−\frac{{h}}{{m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}}+\mathrm{2}{h}\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$$$=\frac{{h}}{\mathrm{3}}\left(\mathrm{2}{m}+\frac{\mathrm{1}}{\:\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}−{m}}−\frac{\mathrm{1}}{\:\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}+{m}}\right) \\ $$$$=\frac{\mathrm{4}{mh}}{\mathrm{3}}\neq{constant} \\ $$

Commented by peter frank last updated on 24/Oct/20

thank you.understood every line

$$\mathrm{thank}\:\mathrm{you}.\mathrm{understood}\:\mathrm{every}\:\mathrm{line} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com