Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 119681 by TANMAY PANACEA last updated on 26/Oct/20

∫_0 ^π (√((1+cos2x)/2)) dx  ∫_0 ^∞ [ne^(−x) ]dx

$$\int_{\mathrm{0}} ^{\pi} \sqrt{\frac{\mathrm{1}+{cos}\mathrm{2}{x}}{\mathrm{2}}}\:{dx} \\ $$$$\int_{\mathrm{0}} ^{\infty} \left[{ne}^{−{x}} \right]{dx} \\ $$

Answered by bemath last updated on 26/Oct/20

(√(((1+cos 2x)/2) )) = (√((1+2cos^2 x−1)/2))   = ∣ cos x ∣ → { ((cos x for 0≤x≤(π/2))),((−cos x for (π/2)≤x≤π)) :}  I = ∫_0 ^(π/2)  ∣cos x∣ dx + ∫_(π/2) ^π  ∣cos x∣ dx  I = sin x ]_0 ^(π/2) −(sin x)]_(π/2) ^π   I=1−(0−1)=2

$$\sqrt{\frac{\mathrm{1}+\mathrm{cos}\:\mathrm{2}{x}}{\mathrm{2}}\:}\:=\:\sqrt{\frac{\mathrm{1}+\mathrm{2cos}\:^{\mathrm{2}} {x}−\mathrm{1}}{\mathrm{2}}} \\ $$$$\:=\:\mid\:\mathrm{cos}\:{x}\:\mid\:\rightarrow\begin{cases}{\mathrm{cos}\:{x}\:{for}\:\mathrm{0}\leqslant{x}\leqslant\frac{\pi}{\mathrm{2}}}\\{−\mathrm{cos}\:{x}\:{for}\:\frac{\pi}{\mathrm{2}}\leqslant{x}\leqslant\pi}\end{cases} \\ $$$${I}\:=\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\mid\mathrm{cos}\:{x}\mid\:{dx}\:+\:\underset{\frac{\pi}{\mathrm{2}}} {\overset{\pi} {\int}}\:\mid\mathrm{cos}\:{x}\mid\:{dx} \\ $$$$\left.{I}\left.\:=\:\mathrm{sin}\:{x}\:\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} −\left(\mathrm{sin}\:{x}\right)\right]_{\frac{\pi}{\mathrm{2}}} ^{\pi} \\ $$$${I}=\mathrm{1}−\left(\mathrm{0}−\mathrm{1}\right)=\mathrm{2} \\ $$

Commented by TANMAY PANACEA last updated on 26/Oct/20

excellent sir

$${excellent}\:{sir} \\ $$

Answered by mindispower last updated on 26/Oct/20

∫_0 ^∞ [ne^(−x) ]dx=u_n   t=ne^(−x) ⇒x=−ln((t/n))⇒dx=−(1/t)dt  =∫_0 ^n (([t])/t)dt  =Σ_(k=0) ^(n−1) ∫_k ^(k+1) (([t]dt)/t)=Σ_(k≤n−1) ∫_k ^(k+1) (k/t)dt  =Σ_(k≤n−1) kln(1+(1/k))=Σ_(k≤n−1) (kln(k+1)−kln(k))  =Σ_(k≤n−1) ((k+1)ln(k+1)−kln(k)−ln(k+1))=u_n   n=0,u_0 =0  n≥1  u_n =nln(n)−ln[Π_(k≤n−1) (k+1)]=nln(n)−ln(n!)  u_n = { ((0  ,n=0)),((nln(n)−ln(n!) ,n≥1)) :}

$$\int_{\mathrm{0}} ^{\infty} \left[{ne}^{−{x}} \right]{dx}={u}_{{n}} \\ $$$${t}={ne}^{−{x}} \Rightarrow{x}=−{ln}\left(\frac{{t}}{{n}}\right)\Rightarrow{dx}=−\frac{\mathrm{1}}{{t}}{dt} \\ $$$$=\int_{\mathrm{0}} ^{{n}} \frac{\left[{t}\right]}{{t}}{dt} \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\int_{{k}} ^{{k}+\mathrm{1}} \frac{\left[{t}\right]{dt}}{{t}}=\underset{{k}\leqslant{n}−\mathrm{1}} {\sum}\int_{{k}} ^{{k}+\mathrm{1}} \frac{{k}}{{t}}{dt} \\ $$$$=\underset{{k}\leqslant{n}−\mathrm{1}} {\sum}{kln}\left(\mathrm{1}+\frac{\mathrm{1}}{{k}}\right)=\underset{{k}\leqslant{n}−\mathrm{1}} {\sum}\left({kln}\left({k}+\mathrm{1}\right)−{kln}\left({k}\right)\right) \\ $$$$=\underset{{k}\leqslant{n}−\mathrm{1}} {\sum}\left(\left({k}+\mathrm{1}\right){ln}\left({k}+\mathrm{1}\right)−{kln}\left({k}\right)−{ln}\left({k}+\mathrm{1}\right)\right)={u}_{{n}} \\ $$$${n}=\mathrm{0},{u}_{\mathrm{0}} =\mathrm{0} \\ $$$${n}\geqslant\mathrm{1} \\ $$$${u}_{{n}} ={nln}\left({n}\right)−{ln}\left[\underset{{k}\leqslant{n}−\mathrm{1}} {\prod}\left({k}+\mathrm{1}\right)\right]={nln}\left({n}\right)−{ln}\left({n}!\right) \\ $$$${u}_{{n}} =\begin{cases}{\mathrm{0}\:\:,{n}=\mathrm{0}}\\{{nln}\left({n}\right)−{ln}\left({n}!\right)\:,{n}\geqslant\mathrm{1}}\end{cases} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by TANMAY PANACEA last updated on 26/Oct/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented by mindispower last updated on 26/Oct/20

withe pleasur have a nice day

$${withe}\:{pleasur}\:{have}\:{a}\:{nice}\:{day} \\ $$

Answered by mathmax by abdo last updated on 26/Oct/20

A =∫_0 ^π (√((1+cos(2x))/2))dx ⇒A =∫_0 ^π ∣cosx∣dx  =∫_0 ^(π/2) cosx dx −∫_(π/2) ^π cosx dx =[sinx]_0 ^(π/2) −[sinx]_(π/2) ^π   =1−(−1) =2 ⇒ A =2

$$\mathrm{A}\:=\int_{\mathrm{0}} ^{\pi} \sqrt{\frac{\mathrm{1}+\mathrm{cos}\left(\mathrm{2x}\right)}{\mathrm{2}}}\mathrm{dx}\:\Rightarrow\mathrm{A}\:=\int_{\mathrm{0}} ^{\pi} \mid\mathrm{cosx}\mid\mathrm{dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cosx}\:\mathrm{dx}\:−\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} \mathrm{cosx}\:\mathrm{dx}\:=\left[\mathrm{sinx}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} −\left[\mathrm{sinx}\right]_{\frac{\pi}{\mathrm{2}}} ^{\pi} \\ $$$$=\mathrm{1}−\left(−\mathrm{1}\right)\:=\mathrm{2}\:\Rightarrow\:\mathrm{A}\:=\mathrm{2} \\ $$

Answered by mathmax by abdo last updated on 26/Oct/20

I_n =∫_0 ^∞ [ne^(−x) ]dx we do the changement ne^(−x)  =t ⇒e^(−x)  =(t/n)  ⇒−x=ln((t/n)) ⇒x =−ln((t/n))=ln(n)−ln(t) (we suppose n≠0)  ⇒I_n =∫_n ^0 [t](−(dt/t)) =∫_0 ^n  (([t])/t)dt  =Σ_(k=0) ^(n−1) ∫_k ^(k+1) (k/t)dt  =Σ_(k=0) ^(n−1) k{ln(k+1)−ln(k)}  =Σ_(k=1) ^(n−1) kln(((k+1)/k)) =Σ_(k=1) ^(n−1) k ln(1+(1/k))  =ln(2)+2ln(1+(1/2))+3ln(1+(1/3))+...+(n−1)ln(1+(1/(n−1)))  ifn=0 we get I_n =0

$$\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\infty} \left[\mathrm{ne}^{−\mathrm{x}} \right]\mathrm{dx}\:\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{changement}\:\mathrm{ne}^{−\mathrm{x}} \:=\mathrm{t}\:\Rightarrow\mathrm{e}^{−\mathrm{x}} \:=\frac{\mathrm{t}}{\mathrm{n}} \\ $$$$\Rightarrow−\mathrm{x}=\mathrm{ln}\left(\frac{\mathrm{t}}{\mathrm{n}}\right)\:\Rightarrow\mathrm{x}\:=−\mathrm{ln}\left(\frac{\mathrm{t}}{\mathrm{n}}\right)=\mathrm{ln}\left(\mathrm{n}\right)−\mathrm{ln}\left(\mathrm{t}\right)\:\left(\mathrm{we}\:\mathrm{suppose}\:\mathrm{n}\neq\mathrm{0}\right) \\ $$$$\Rightarrow\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{n}} ^{\mathrm{0}} \left[\mathrm{t}\right]\left(−\frac{\mathrm{dt}}{\mathrm{t}}\right)\:=\int_{\mathrm{0}} ^{\mathrm{n}} \:\frac{\left[\mathrm{t}\right]}{\mathrm{t}}\mathrm{dt}\:\:=\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}−\mathrm{1}} \int_{\mathrm{k}} ^{\mathrm{k}+\mathrm{1}} \frac{\mathrm{k}}{\mathrm{t}}\mathrm{dt} \\ $$$$=\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}−\mathrm{1}} \mathrm{k}\left\{\mathrm{ln}\left(\mathrm{k}+\mathrm{1}\right)−\mathrm{ln}\left(\mathrm{k}\right)\right\} \\ $$$$=\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}−\mathrm{1}} \mathrm{kln}\left(\frac{\mathrm{k}+\mathrm{1}}{\mathrm{k}}\right)\:=\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}−\mathrm{1}} \mathrm{k}\:\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{k}}\right) \\ $$$$=\mathrm{ln}\left(\mathrm{2}\right)+\mathrm{2ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)+\mathrm{3ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}\right)+...+\left(\mathrm{n}−\mathrm{1}\right)\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}−\mathrm{1}}\right) \\ $$$$\mathrm{ifn}=\mathrm{0}\:\mathrm{we}\:\mathrm{get}\:\mathrm{I}_{\mathrm{n}} =\mathrm{0} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com