Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 119921 by bramlexs22 last updated on 28/Oct/20

solving the following system of equations   { ((((3x−y)/(x−3y))=x^2 )),((((3y−z)/(y−3z))=y^2 )),((((3z−x)/(z−3x))=z^2 )) :}

$${solving}\:{the}\:{following}\:{system}\:{of}\:{equations} \\ $$$$\begin{cases}{\frac{\mathrm{3}{x}−{y}}{{x}−\mathrm{3}{y}}={x}^{\mathrm{2}} }\\{\frac{\mathrm{3}{y}−{z}}{{y}−\mathrm{3}{z}}={y}^{\mathrm{2}} }\\{\frac{\mathrm{3}{z}−{x}}{{z}−\mathrm{3}{x}}={z}^{\mathrm{2}} }\end{cases} \\ $$

Answered by mindispower last updated on 28/Oct/20

⇒x=((z^3 −3z)/(−3z^2 +1))  tg(Σa_k )=((Σ(−1)^k S_(2k+1) )/(Σ(−1)^k S_(2k) )),  Withe S_0 =1  tg(a+b+c)=((tg(a)+tg(b)+tg(c)−tg(a)tg(b)tg(c))/(1−tg(a)tg(b)−tg(c)tg(b)−tg(a)tg(c)))  a=b=c  tg(3c)=((3tg(c)−tg^3 (c))/(1−3tg^2 (c))),  let z=tg(c),y=tg(a),x=tg(b)  ⇔tg(a)=((3tg(b)−tg^3 (b))/(1−3tg^2 (b)))=tg(3b)...Equation 1  ⇔tg(c)=((3tg(a)−tg^3 (a))/(1−3tg^2 (a)))=tg(3a)...E(2)  ⇔tg(b)=((3tg(c)−tg^3 (c))/(1−3tg^2 (c)))=tg(3c)  tg(a)=tg(3b)⇒a=3b,a=kπ+3b  tg(c)=tg(3a)⇒c=sπ+3a  tg(b)=tg(3c)⇒b=3c+dπ=3(sπ+3a)+dπ  b=(d+3s)π+9kπ+27b  b=((−kπ)/3)−(((d+3s)/(27)))π,d,s,k∈Z  find b,⇒a⇒c,tg(a)=y,tg(c)=z,tg(b)=x

$$\Rightarrow{x}=\frac{{z}^{\mathrm{3}} −\mathrm{3}{z}}{−\mathrm{3}{z}^{\mathrm{2}} +\mathrm{1}} \\ $$$${tg}\left(\Sigma{a}_{{k}} \right)=\frac{\Sigma\left(−\mathrm{1}\right)^{{k}} {S}_{\mathrm{2}{k}+\mathrm{1}} }{\Sigma\left(−\mathrm{1}\right)^{{k}} {S}_{\mathrm{2}{k}} },\:\:{Withe}\:{S}_{\mathrm{0}} =\mathrm{1} \\ $$$${tg}\left({a}+{b}+{c}\right)=\frac{{tg}\left({a}\right)+{tg}\left({b}\right)+{tg}\left({c}\right)−{tg}\left({a}\right){tg}\left({b}\right){tg}\left({c}\right)}{\mathrm{1}−{tg}\left({a}\right){tg}\left({b}\right)−{tg}\left({c}\right){tg}\left({b}\right)−{tg}\left({a}\right){tg}\left({c}\right)} \\ $$$${a}={b}={c} \\ $$$${tg}\left(\mathrm{3}{c}\right)=\frac{\mathrm{3}{tg}\left({c}\right)−{tg}^{\mathrm{3}} \left({c}\right)}{\mathrm{1}−\mathrm{3}{tg}^{\mathrm{2}} \left({c}\right)}, \\ $$$${let}\:{z}={tg}\left({c}\right),{y}={tg}\left({a}\right),{x}={tg}\left({b}\right) \\ $$$$\Leftrightarrow{tg}\left({a}\right)=\frac{\mathrm{3}{tg}\left({b}\right)−{tg}^{\mathrm{3}} \left({b}\right)}{\mathrm{1}−\mathrm{3}{tg}^{\mathrm{2}} \left({b}\right)}={tg}\left(\mathrm{3}{b}\right)...{Equation}\:\mathrm{1} \\ $$$$\Leftrightarrow{tg}\left({c}\right)=\frac{\mathrm{3}{tg}\left({a}\right)−{tg}^{\mathrm{3}} \left({a}\right)}{\mathrm{1}−\mathrm{3}{tg}^{\mathrm{2}} \left({a}\right)}={tg}\left(\mathrm{3}{a}\right)...{E}\left(\mathrm{2}\right) \\ $$$$\Leftrightarrow{tg}\left({b}\right)=\frac{\mathrm{3}{tg}\left({c}\right)−{tg}^{\mathrm{3}} \left({c}\right)}{\mathrm{1}−\mathrm{3}{tg}^{\mathrm{2}} \left({c}\right)}={tg}\left(\mathrm{3}{c}\right) \\ $$$${tg}\left({a}\right)={tg}\left(\mathrm{3}{b}\right)\Rightarrow{a}=\mathrm{3}{b},{a}={k}\pi+\mathrm{3}{b} \\ $$$${tg}\left({c}\right)={tg}\left(\mathrm{3}{a}\right)\Rightarrow{c}={s}\pi+\mathrm{3}{a} \\ $$$${tg}\left({b}\right)={tg}\left(\mathrm{3}{c}\right)\Rightarrow{b}=\mathrm{3}{c}+{d}\pi=\mathrm{3}\left({s}\pi+\mathrm{3}{a}\right)+{d}\pi \\ $$$${b}=\left({d}+\mathrm{3}{s}\right)\pi+\mathrm{9}{k}\pi+\mathrm{27}{b} \\ $$$${b}=\frac{−{k}\pi}{\mathrm{3}}−\left(\frac{{d}+\mathrm{3}{s}}{\mathrm{27}}\right)\pi,{d},{s},{k}\in\mathbb{Z} \\ $$$${find}\:{b},\Rightarrow{a}\Rightarrow{c},{tg}\left({a}\right)={y},{tg}\left({c}\right)={z},{tg}\left({b}\right)={x} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Answered by MJS_new last updated on 28/Oct/20

one solution is x=y=z=±i  for the other solutions let  y=px∧z=qx  ⇒   { ((((p−3)/(3p−1))=x^2 )),((((3p−q)/(p−3q))=p^2 x^2 )),((((3q−1)/(q−3))=q^2 x^2 )) :}  ⇒  ((p−3)/(3p−1))=((3p−q)/(p^2 (p−3q)))=((3q−1)/(q^2 (q−3)))  we can eliminate one of the two unknown  and get a polynome of degree 13 with one  solution =1. the other 12 are ∈R but I only  can approximate  q=((p(p^3 −3p^2 −9p+3))/(3p^3 −9p^2 −3p+1))  (p−1)((p^(12) +1)−20(p^(11) +p)+34(p^(10) +p^2 )+700(p^9 +p^3 )−2705(p^8 +p^4 )−680(p^7 +p^5 )+9436p^6 )=0  p_1 =1  p_2 ≈−5.87781  p_3 ≈−1.63530  p_4 ≈−.611508  p_5 ≈−.170131  p_6 ≈.0637272  p_7 ≈.199046  p_8 ≈.278216  p_9 ≈.320163  p_(10) ≈3.12340  p_(11) ≈3.59433  p_(12) ≈5.02397  p_(13) ≈15.6919  please do the rest for yourself

$$\mathrm{one}\:\mathrm{solution}\:\mathrm{is}\:{x}={y}={z}=\pm\mathrm{i} \\ $$$$\mathrm{for}\:\mathrm{the}\:\mathrm{other}\:\mathrm{solutions}\:\mathrm{let} \\ $$$${y}={px}\wedge{z}={qx} \\ $$$$\Rightarrow \\ $$$$\begin{cases}{\frac{{p}−\mathrm{3}}{\mathrm{3}{p}−\mathrm{1}}={x}^{\mathrm{2}} }\\{\frac{\mathrm{3}{p}−{q}}{{p}−\mathrm{3}{q}}={p}^{\mathrm{2}} {x}^{\mathrm{2}} }\\{\frac{\mathrm{3}{q}−\mathrm{1}}{{q}−\mathrm{3}}={q}^{\mathrm{2}} {x}^{\mathrm{2}} }\end{cases} \\ $$$$\Rightarrow \\ $$$$\frac{{p}−\mathrm{3}}{\mathrm{3}{p}−\mathrm{1}}=\frac{\mathrm{3}{p}−{q}}{{p}^{\mathrm{2}} \left({p}−\mathrm{3}{q}\right)}=\frac{\mathrm{3}{q}−\mathrm{1}}{{q}^{\mathrm{2}} \left({q}−\mathrm{3}\right)} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{eliminate}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{two}\:\mathrm{unknown} \\ $$$$\mathrm{and}\:\mathrm{get}\:\mathrm{a}\:\mathrm{polynome}\:\mathrm{of}\:\mathrm{degree}\:\mathrm{13}\:\mathrm{with}\:\mathrm{one} \\ $$$$\mathrm{solution}\:=\mathrm{1}.\:\mathrm{the}\:\mathrm{other}\:\mathrm{12}\:\mathrm{are}\:\in\mathbb{R}\:\mathrm{but}\:\mathrm{I}\:\mathrm{only} \\ $$$$\mathrm{can}\:\mathrm{approximate} \\ $$$${q}=\frac{{p}\left({p}^{\mathrm{3}} −\mathrm{3}{p}^{\mathrm{2}} −\mathrm{9}{p}+\mathrm{3}\right)}{\mathrm{3}{p}^{\mathrm{3}} −\mathrm{9}{p}^{\mathrm{2}} −\mathrm{3}{p}+\mathrm{1}} \\ $$$$\left({p}−\mathrm{1}\right)\left(\left({p}^{\mathrm{12}} +\mathrm{1}\right)−\mathrm{20}\left({p}^{\mathrm{11}} +{p}\right)+\mathrm{34}\left({p}^{\mathrm{10}} +{p}^{\mathrm{2}} \right)+\mathrm{700}\left({p}^{\mathrm{9}} +{p}^{\mathrm{3}} \right)−\mathrm{2705}\left({p}^{\mathrm{8}} +{p}^{\mathrm{4}} \right)−\mathrm{680}\left({p}^{\mathrm{7}} +{p}^{\mathrm{5}} \right)+\mathrm{9436}{p}^{\mathrm{6}} \right)=\mathrm{0} \\ $$$${p}_{\mathrm{1}} =\mathrm{1} \\ $$$${p}_{\mathrm{2}} \approx−\mathrm{5}.\mathrm{87781} \\ $$$${p}_{\mathrm{3}} \approx−\mathrm{1}.\mathrm{63530} \\ $$$${p}_{\mathrm{4}} \approx−.\mathrm{611508} \\ $$$${p}_{\mathrm{5}} \approx−.\mathrm{170131} \\ $$$${p}_{\mathrm{6}} \approx.\mathrm{0637272} \\ $$$${p}_{\mathrm{7}} \approx.\mathrm{199046} \\ $$$${p}_{\mathrm{8}} \approx.\mathrm{278216} \\ $$$${p}_{\mathrm{9}} \approx.\mathrm{320163} \\ $$$${p}_{\mathrm{10}} \approx\mathrm{3}.\mathrm{12340} \\ $$$${p}_{\mathrm{11}} \approx\mathrm{3}.\mathrm{59433} \\ $$$${p}_{\mathrm{12}} \approx\mathrm{5}.\mathrm{02397} \\ $$$${p}_{\mathrm{13}} \approx\mathrm{15}.\mathrm{6919} \\ $$$$\mathrm{please}\:\mathrm{do}\:\mathrm{the}\:\mathrm{rest}\:\mathrm{for}\:\mathrm{yourself} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com