Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 120160 by 77731 last updated on 29/Oct/20

Commented by JDamian last updated on 29/Oct/20

https://m.youtube.com/watch?v=9kfmk7jEuvQ

Answered by mindispower last updated on 29/Oct/20

(1/(2^m (2^n +2^m )))=−(1/(2^n (2^n +2^m )))+(1/2^(n+m) )  Σ_(m≥0) Σ_(n≥0) ((m+n+nm)/(2^m (2^n +2^m )))=−Σ_(m≥0) Σ_(n≥0) ((m+n+nm)/(2^n (2^n +2^m )))+ΣΣ((n+m+nm)/2^(n+m) )  S=Σ_(m≥0) Σ_(n≥0) ((m+n+nm)/(2^m (2^n +2^m )))=Σ_m Σ_n ((n+m+nm)/(2^n (2^m +2^n )))=S  (n,m)→(m,n) is bijection  ⇔  S=−S+2Σ_m Σ_n (m/2^(n+m) )+ΣΣ((mn)/(2^n .2^m ))  Σ_(m≥0) (m/2^m )=Σ_(m≥1) (m/2^m ),(1/(1−x))=Σx^n ⇒(x/((1−x)^2 ))=Σ_(n≥1) nx^n   2S=2.(1/(1−(1/2))).((1/2)/((1−(1/2))^2 ))+(((1/2)/((1−(1/2))^2 )))^2   2S=4.2+4⇒S=6  Σ_(n≥0) Σ_(m≥0) ((n+m+nm)/(2^m (2^m +2^n )))=6

$$\frac{\mathrm{1}}{\mathrm{2}^{{m}} \left(\mathrm{2}^{{n}} +\mathrm{2}^{{m}} \right)}=−\frac{\mathrm{1}}{\mathrm{2}^{{n}} \left(\mathrm{2}^{{n}} +\mathrm{2}^{{m}} \right)}+\frac{\mathrm{1}}{\mathrm{2}^{{n}+{m}} } \\ $$$$\underset{{m}\geqslant\mathrm{0}} {\sum}\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{{m}+{n}+{nm}}{\mathrm{2}^{{m}} \left(\mathrm{2}^{{n}} +\mathrm{2}^{{m}} \right)}=−\underset{{m}\geqslant\mathrm{0}} {\sum}\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{{m}+{n}+{nm}}{\mathrm{2}^{{n}} \left(\mathrm{2}^{{n}} +\mathrm{2}^{{m}} \right)}+\Sigma\Sigma\frac{{n}+{m}+{nm}}{\mathrm{2}^{{n}+{m}} } \\ $$$${S}=\underset{{m}\geqslant\mathrm{0}} {\sum}\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{{m}+{n}+{nm}}{\mathrm{2}^{{m}} \left(\mathrm{2}^{{n}} +\mathrm{2}^{{m}} \right)}=\underset{{m}} {\sum}\underset{{n}} {\sum}\frac{{n}+{m}+{nm}}{\mathrm{2}^{{n}} \left(\mathrm{2}^{{m}} +\mathrm{2}^{{n}} \right)}={S} \\ $$$$\left({n},{m}\right)\rightarrow\left({m},{n}\right)\:{is}\:{bijection} \\ $$$$\Leftrightarrow \\ $$$${S}=−{S}+\mathrm{2}\underset{{m}} {\sum}\underset{{n}} {\sum}\frac{{m}}{\mathrm{2}^{{n}+{m}} }+\Sigma\Sigma\frac{{mn}}{\mathrm{2}^{{n}} .\mathrm{2}^{{m}} } \\ $$$$\underset{{m}\geqslant\mathrm{0}} {\sum}\frac{{m}}{\mathrm{2}^{{m}} }=\underset{{m}\geqslant\mathrm{1}} {\sum}\frac{{m}}{\mathrm{2}^{{m}} },\frac{\mathrm{1}}{\mathrm{1}−{x}}=\Sigma{x}^{{n}} \Rightarrow\frac{{x}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }=\underset{{n}\geqslant\mathrm{1}} {\sum}{nx}^{{n}} \\ $$$$\mathrm{2}{S}=\mathrm{2}.\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}}.\frac{\frac{\mathrm{1}}{\mathrm{2}}}{\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }+\left(\frac{\frac{\mathrm{1}}{\mathrm{2}}}{\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }\right)^{\mathrm{2}} \\ $$$$\mathrm{2}{S}=\mathrm{4}.\mathrm{2}+\mathrm{4}\Rightarrow{S}=\mathrm{6} \\ $$$$\underset{{n}\geqslant\mathrm{0}} {\sum}\underset{{m}\geqslant\mathrm{0}} {\sum}\frac{{n}+{m}+{nm}}{\mathrm{2}^{{m}} \left(\mathrm{2}^{{m}} +\mathrm{2}^{{n}} \right)}=\mathrm{6} \\ $$

Commented by 77731 last updated on 01/Nov/20

very nice work ...!!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com