Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 121282 by mnjuly1970 last updated on 06/Nov/20

        ... advanced  mathematics...           prove  that  ::                  Ψ=∫_0 ^( 1) Γ(2−x)Γ(1+x)dx=(7/π^2 ) ζ(3)                    ...m.n.july.1970...

$$\:\:\:\:\:\:\:\:...\:\mathrm{advanced}\:\:\mathrm{mathematics}... \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{prove}\:\:\mathrm{that}\:\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Psi=\int_{\mathrm{0}} ^{\:\mathrm{1}} \Gamma\left(\mathrm{2}−{x}\right)\Gamma\left(\mathrm{1}+{x}\right){dx}=\frac{\mathrm{7}}{\pi^{\mathrm{2}} }\:\zeta\left(\mathrm{3}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\mathrm{m}.\mathrm{n}.\mathrm{july}.\mathrm{1970}... \\ $$$$ \\ $$

Answered by mindispower last updated on 06/Nov/20

Ψ=∫_0 ^1 (1−x)(−x)Γ(−x)Γ(1+x)dx  Γ(−x)Γ(1+x)=(π/(sin(−πx)))=−(π/(sin(πx)))  Ψ=π∫_0 ^1 ((x(x−1))/(sin(πx)))dx,We use integration By part  ⇒Ψ=(1/2)[ln(((1−cos(πx))/(1+cos(πx))))x(x−1)]_0 ^1 −(1/2)∫(2x−1)ln(((1−cos(πx))/(1+cos(πx))))dx  Ψ=−(1/2)∫_0 ^1 (2x−1)ln(((2sin^2 (((πx)/2)))/(2cos^2 (((πx)/2)))))dx  =−∫_0 ^1 (2x−1)ln(tg(((πx)/2)))dx  let z=((πx)/2)⇒dx=(2/π)dz  =−(2/π)∫_0 ^(π/2) (((4z)/π)−1)ln(tg(z)).dz  =−(8/π^2 )∫_0 ^(π/2) zln(tg(z))dz  ∀x∈[0,(π/2)[ we have  ln(tg(x))=−2Σ((cos(2(2n−1)x))/(2n−1))  Ψ=−(8/π^2 )Σ_(n≥1) ((−2)/((2n−1))) ∫xcos(2(2n−1)x)dx IBP  −(8/π^2 ).2Σ_(n≥1) ∫_0 ^(π/2) (1/(2(2n−1)^2 ))sin(2(2n−1))  =−((16)/π^2 )Σ_(n≥1) [((cos((2n−1)π)−1)/(4(2n−1)^3 ))]  =.−((16)/π^2 ).Σ_(n≥1) −(1/(2(2n−1)^3 ))=−((16)/π^2 ).−(1/2)((7/8)ζ(3))  =(7/π^2 )ζ(3)

$$\Psi=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}\right)\left(−{x}\right)\Gamma\left(−{x}\right)\Gamma\left(\mathrm{1}+{x}\right){dx} \\ $$$$\Gamma\left(−{x}\right)\Gamma\left(\mathrm{1}+{x}\right)=\frac{\pi}{{sin}\left(−\pi{x}\right)}=−\frac{\pi}{{sin}\left(\pi{x}\right)} \\ $$$$\Psi=\pi\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}\left({x}−\mathrm{1}\right)}{{sin}\left(\pi{x}\right)}{dx},{We}\:{use}\:{integration}\:{By}\:{part} \\ $$$$\Rightarrow\Psi=\frac{\mathrm{1}}{\mathrm{2}}\left[{ln}\left(\frac{\mathrm{1}−{cos}\left(\pi{x}\right)}{\mathrm{1}+{cos}\left(\pi{x}\right)}\right){x}\left({x}−\mathrm{1}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}}\int\left(\mathrm{2}{x}−\mathrm{1}\right){ln}\left(\frac{\mathrm{1}−{cos}\left(\pi{x}\right)}{\mathrm{1}+{cos}\left(\pi{x}\right)}\right){dx} \\ $$$$\Psi=−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{2}{x}−\mathrm{1}\right){ln}\left(\frac{\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{\pi{x}}{\mathrm{2}}\right)}{\mathrm{2}{cos}^{\mathrm{2}} \left(\frac{\pi{x}}{\mathrm{2}}\right)}\right){dx} \\ $$$$=−\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{2}{x}−\mathrm{1}\right){ln}\left({tg}\left(\frac{\pi{x}}{\mathrm{2}}\right)\right){dx} \\ $$$${let}\:{z}=\frac{\pi{x}}{\mathrm{2}}\Rightarrow{dx}=\frac{\mathrm{2}}{\pi}{dz} \\ $$$$=−\frac{\mathrm{2}}{\pi}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\frac{\mathrm{4}{z}}{\pi}−\mathrm{1}\right){ln}\left({tg}\left({z}\right)\right).{dz} \\ $$$$=−\frac{\mathrm{8}}{\pi^{\mathrm{2}} }\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {zln}\left({tg}\left({z}\right)\right){dz} \\ $$$$\forall{x}\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\left[\:{we}\:{have}\right.\right. \\ $$$${ln}\left({tg}\left({x}\right)\right)=−\mathrm{2}\Sigma\frac{{cos}\left(\mathrm{2}\left(\mathrm{2}{n}−\mathrm{1}\right){x}\right)}{\mathrm{2}{n}−\mathrm{1}} \\ $$$$\Psi=−\frac{\mathrm{8}}{\pi^{\mathrm{2}} }\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{−\mathrm{2}}{\left(\mathrm{2}{n}−\mathrm{1}\right)}\:\int{xcos}\left(\mathrm{2}\left(\mathrm{2}{n}−\mathrm{1}\right){x}\right){dx}\:{IBP} \\ $$$$−\frac{\mathrm{8}}{\pi^{\mathrm{2}} }.\mathrm{2}\underset{{n}\geqslant\mathrm{1}} {\sum}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{2}{n}−\mathrm{1}\right)^{\mathrm{2}} }{sin}\left(\mathrm{2}\left(\mathrm{2}{n}−\mathrm{1}\right)\right) \\ $$$$=−\frac{\mathrm{16}}{\pi^{\mathrm{2}} }\underset{{n}\geqslant\mathrm{1}} {\sum}\left[\frac{{cos}\left(\left(\mathrm{2}{n}−\mathrm{1}\right)\pi\right)−\mathrm{1}}{\mathrm{4}\left(\mathrm{2}{n}−\mathrm{1}\right)^{\mathrm{3}} }\right] \\ $$$$=.−\frac{\mathrm{16}}{\pi^{\mathrm{2}} }.\underset{{n}\geqslant\mathrm{1}} {\sum}−\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{2}{n}−\mathrm{1}\right)^{\mathrm{3}} }=−\frac{\mathrm{16}}{\pi^{\mathrm{2}} }.−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{7}}{\mathrm{8}}\zeta\left(\mathrm{3}\right)\right) \\ $$$$=\frac{\mathrm{7}}{\pi^{\mathrm{2}} }\zeta\left(\mathrm{3}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 06/Nov/20

bravo  sir mindspower  good for you...

$${bravo}\:\:{sir}\:{mindspower} \\ $$$${good}\:{for}\:{you}... \\ $$

Commented by mnjuly1970 last updated on 06/Nov/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com