Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 123393 by malwan last updated on 25/Nov/20

find the equations of [two] circles  which thier center both (2,−2)  and tangent with circle  x^2  + y^2  −8x + 10y + 5 = 0

$${find}\:{the}\:{equations}\:{of}\:\left[{two}\right]\:{circles} \\ $$$${which}\:{thier}\:{center}\:{both}\:\left(\mathrm{2},−\mathrm{2}\right) \\ $$$${and}\:{tangent}\:{with}\:{circle} \\ $$$${x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:−\mathrm{8}{x}\:+\:\mathrm{10}{y}\:+\:\mathrm{5}\:=\:\mathrm{0} \\ $$

Commented by malwan last updated on 25/Nov/20

can you drow it sir ?

$${can}\:{you}\:{drow}\:{it}\:{sir}\:? \\ $$

Commented by MJS_new last updated on 25/Nov/20

sorry I have no drawing app

$$\mathrm{sorry}\:\mathrm{I}\:\mathrm{have}\:\mathrm{no}\:\mathrm{drawing}\:\mathrm{app} \\ $$

Commented by talminator2856791 last updated on 25/Nov/20

 you can use this app drawing tool

$$\:\mathrm{you}\:\mathrm{can}\:\mathrm{use}\:\mathrm{this}\:\mathrm{app}\:\mathrm{drawing}\:\mathrm{tool} \\ $$

Commented by malwan last updated on 25/Nov/20

can you try sir ?

$${can}\:{you}\:{try}\:{sir}\:? \\ $$

Commented by MJS_new last updated on 25/Nov/20

sorry I never used it and I don′t have the time  to get used to it. but it′s easy to sketch

$$\mathrm{sorry}\:\mathrm{I}\:\mathrm{never}\:\mathrm{used}\:\mathrm{it}\:\mathrm{and}\:\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{have}\:\mathrm{the}\:\mathrm{time} \\ $$$$\mathrm{to}\:\mathrm{get}\:\mathrm{used}\:\mathrm{to}\:\mathrm{it}.\:\mathrm{but}\:\mathrm{it}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{sketch} \\ $$

Commented by talminator2856791 last updated on 25/Nov/20

 yes i tried but it is difficult to use this

$$\:\mathrm{yes}\:\mathrm{i}\:\mathrm{tried}\:\mathrm{but}\:\mathrm{it}\:\mathrm{is}\:\mathrm{difficult}\:\mathrm{to}\:\mathrm{use}\:\mathrm{this} \\ $$

Answered by talminator2856791 last updated on 25/Nov/20

    x^2 +y^2 −8x+10y+5 = (x−4)^2 +(y+5)^2 +5−16−25   (x−4)^2 +(y+5)^2  = r^2  = 36   r = 6   r(4; −5)   distance between centres d   d = (√(2^2 +3^2 ))   d = (√(13))   (√(13)) ≪ r      equations of circles:   (x−2)^2 +(y+2)^2  = (6−(√(13)))^2    (x−2)^2 +(y+2)^2  = (6+(√(13)))^2

$$\: \\ $$$$\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{10}{y}+\mathrm{5}\:=\:\left({x}−\mathrm{4}\right)^{\mathrm{2}} +\left({y}+\mathrm{5}\right)^{\mathrm{2}} +\mathrm{5}−\mathrm{16}−\mathrm{25} \\ $$$$\:\left({x}−\mathrm{4}\right)^{\mathrm{2}} +\left({y}+\mathrm{5}\right)^{\mathrm{2}} \:=\:{r}^{\mathrm{2}} \:=\:\mathrm{36} \\ $$$$\:{r}\:=\:\mathrm{6} \\ $$$$\:{r}\left(\mathrm{4};\:−\mathrm{5}\right) \\ $$$$\:\mathrm{distance}\:\mathrm{between}\:\mathrm{centres}\:{d} \\ $$$$\:{d}\:=\:\sqrt{\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} } \\ $$$$\:{d}\:=\:\sqrt{\mathrm{13}} \\ $$$$\:\sqrt{\mathrm{13}}\:\ll\:{r} \\ $$$$\: \\ $$$$\:\mathrm{equations}\:\mathrm{of}\:\mathrm{circles}: \\ $$$$\:\left({x}−\mathrm{2}\right)^{\mathrm{2}} +\left({y}+\mathrm{2}\right)^{\mathrm{2}} \:=\:\left(\mathrm{6}−\sqrt{\mathrm{13}}\right)^{\mathrm{2}} \\ $$$$\:\left({x}−\mathrm{2}\right)^{\mathrm{2}} +\left({y}+\mathrm{2}\right)^{\mathrm{2}} \:=\:\left(\mathrm{6}+\sqrt{\mathrm{13}}\right)^{\mathrm{2}} \\ $$

Commented by malwan last updated on 25/Nov/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Answered by MJS_new last updated on 25/Nov/20

(1) (x−2)^2 +(y+2)^2 −r^2 =0  (2) x^2 +y^2 −8x+10y+5=0  (1) x^2 +y^2 −4x+4y+8−r^2 =0  (1)−(2) 4x−6y+3−r^2 =0 ⇒ y=((4x−r^2 +3)/6)  insert in (1) or (2)  ((13)/9)x^2 −((2(r^2 +3))/9)+((r^4 −66r^2 +369)/(36))=0  x^2 −((2(o^2 +3))/(13))x+((r^4 −66r^2 +369)/(52))=0  tangenting circles means we must find r in  order to get a? double solution for x  x^2 +px+q=0 ⇒ x=−(p/2)±(√((p^2 /4)−q))  we need (p^2 /4)−q=0  ⇒ (9/(676))(r^4 −98r^2 +529)=0  ⇒ r=6±(√(13)) [r>0]  ⇒  circle 1: (x−2)^2 +(y+2)^2 +49−12(√(13))=0  circle 2: (x−2)^2 +(y+2)^2 +49+12(√(13))=0

$$\left(\mathrm{1}\right)\:\left({x}−\mathrm{2}\right)^{\mathrm{2}} +\left({y}+\mathrm{2}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} =\mathrm{0} \\ $$$$\left(\mathrm{2}\right)\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{10}{y}+\mathrm{5}=\mathrm{0} \\ $$$$\left(\mathrm{1}\right)\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4}{y}+\mathrm{8}−{r}^{\mathrm{2}} =\mathrm{0} \\ $$$$\left(\mathrm{1}\right)−\left(\mathrm{2}\right)\:\mathrm{4}{x}−\mathrm{6}{y}+\mathrm{3}−{r}^{\mathrm{2}} =\mathrm{0}\:\Rightarrow\:{y}=\frac{\mathrm{4}{x}−{r}^{\mathrm{2}} +\mathrm{3}}{\mathrm{6}} \\ $$$$\mathrm{insert}\:\mathrm{in}\:\left(\mathrm{1}\right)\:\mathrm{or}\:\left(\mathrm{2}\right) \\ $$$$\frac{\mathrm{13}}{\mathrm{9}}{x}^{\mathrm{2}} −\frac{\mathrm{2}\left({r}^{\mathrm{2}} +\mathrm{3}\right)}{\mathrm{9}}+\frac{{r}^{\mathrm{4}} −\mathrm{66}{r}^{\mathrm{2}} +\mathrm{369}}{\mathrm{36}}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\frac{\mathrm{2}\left({o}^{\mathrm{2}} +\mathrm{3}\right)}{\mathrm{13}}{x}+\frac{{r}^{\mathrm{4}} −\mathrm{66}{r}^{\mathrm{2}} +\mathrm{369}}{\mathrm{52}}=\mathrm{0} \\ $$$$\mathrm{tangenting}\:\mathrm{circles}\:\mathrm{means}\:\mathrm{we}\:\mathrm{must}\:\mathrm{find}\:{r}\:\mathrm{in} \\ $$$$\mathrm{order}\:\mathrm{to}\:\mathrm{get}\:\mathrm{a}?\:\mathrm{double}\:\mathrm{solution}\:\mathrm{for}\:{x} \\ $$$${x}^{\mathrm{2}} +{px}+{q}=\mathrm{0}\:\Rightarrow\:{x}=−\frac{{p}}{\mathrm{2}}\pm\sqrt{\frac{{p}^{\mathrm{2}} }{\mathrm{4}}−{q}} \\ $$$$\mathrm{we}\:\mathrm{need}\:\frac{{p}^{\mathrm{2}} }{\mathrm{4}}−{q}=\mathrm{0} \\ $$$$\Rightarrow\:\frac{\mathrm{9}}{\mathrm{676}}\left({r}^{\mathrm{4}} −\mathrm{98}{r}^{\mathrm{2}} +\mathrm{529}\right)=\mathrm{0} \\ $$$$\Rightarrow\:{r}=\mathrm{6}\pm\sqrt{\mathrm{13}}\:\left[{r}>\mathrm{0}\right] \\ $$$$\Rightarrow \\ $$$$\mathrm{circle}\:\mathrm{1}:\:\left({x}−\mathrm{2}\right)^{\mathrm{2}} +\left({y}+\mathrm{2}\right)^{\mathrm{2}} +\mathrm{49}−\mathrm{12}\sqrt{\mathrm{13}}=\mathrm{0} \\ $$$$\mathrm{circle}\:\mathrm{2}:\:\left({x}−\mathrm{2}\right)^{\mathrm{2}} +\left({y}+\mathrm{2}\right)^{\mathrm{2}} +\mathrm{49}+\mathrm{12}\sqrt{\mathrm{13}}=\mathrm{0} \\ $$

Commented by malwan last updated on 25/Nov/20

thank you so much sir

$${thank}\:{you}\:{so}\:{much}\:{sir} \\ $$

Commented by peter frank last updated on 25/Nov/20

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com