Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 123462 by mnjuly1970 last updated on 25/Nov/20

             ...nice   calculus...        prove  that ::         Ω=∫_0 ^( 1) ((ln(1−x)ln(1−x^2 ))/x) =^(??) ((11ζ( 3 ))/8)                   .................

$$\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:\:{calculus}... \\ $$$$\:\:\:\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}\right){ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{{x}}\:\overset{??} {=}\frac{\mathrm{11}\zeta\left(\:\mathrm{3}\:\right)}{\mathrm{8}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:................. \\ $$

Answered by Lordose last updated on 25/Nov/20

  Ω = ∫_( 0) ^( 1) ((ln(1−x)(ln(1−x)+ln(1+x)))/x)dx  Ω = ∫_( 0) ^( 1) ((ln^2 (1−x))/x)dx + ∫_0 ^( 1) ((ln(1−x)ln(1+x))/x)dx  Ω = 2ζ(3) − ((5ζ(3))/8)  Ω = ((11ζ(3))/8)

$$ \\ $$$$\Omega\:=\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\left(\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)+\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)\right)}{\mathrm{x}}\mathrm{dx} \\ $$$$\Omega\:=\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{x}}\mathrm{dx}\:+\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{x}}\mathrm{dx} \\ $$$$\Omega\:=\:\mathrm{2}\zeta\left(\mathrm{3}\right)\:−\:\frac{\mathrm{5}\zeta\left(\mathrm{3}\right)}{\mathrm{8}} \\ $$$$\Omega\:=\:\frac{\mathrm{11}\zeta\left(\mathrm{3}\right)}{\mathrm{8}} \\ $$

Commented by Dwaipayan Shikari last updated on 25/Nov/20

∫_0 ^1 ((log^2 (1−x))/x)dx  =∫_0 ^1 ((log^2 x)/(1−x))dx  =∫_0 ^1 log^2 x Σ_(n=0) ^∞ x^n =Σ_(n=0) ^∞ ∫_0 ^1 x^n log^2 (x)      logx=t  =Σ_(n=0) ^∞ ∫_(−∞) ^0 t^2 e^((n+1)x) dx          (n+1)x=−Φ  =−Σ_(n=0) ^∞ (1/((n+1)^3 ))∫_∞ ^0 Φ^2 e^(−Φ) dΦ =Σ_(n=0) ^∞ (1/((n+1)^3 )).Γ(3)=2ζ(3)

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{log}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)}{{x}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{log}^{\mathrm{2}} {x}}{\mathrm{1}−{x}}{dx}\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} {log}^{\mathrm{2}} {x}\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{{n}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} {log}^{\mathrm{2}} \left({x}\right)\:\:\:\:\:\:{logx}={t} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int_{−\infty} ^{\mathrm{0}} {t}^{\mathrm{2}} {e}^{\left({n}+\mathrm{1}\right){x}} {dx}\:\:\:\:\:\:\:\:\:\:\left({n}+\mathrm{1}\right){x}=−\Phi \\ $$$$=−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{3}} }\int_{\infty} ^{\mathrm{0}} \Phi^{\mathrm{2}} {e}^{−\Phi} {d}\Phi\:=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{3}} }.\Gamma\left(\mathrm{3}\right)=\mathrm{2}\zeta\left(\mathrm{3}\right) \\ $$

Commented by mnjuly1970 last updated on 26/Nov/20

thank you

$${thank}\:{you} \\ $$

Commented by mnjuly1970 last updated on 26/Nov/20

thank you..

$${thank}\:{you}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com