Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 123764 by mnjuly1970 last updated on 28/Nov/20

            .... advanced  calculus ...         prove  that::::         Σ_(n=1) ^∞ {((ζ(2n+1))/(4^(n )  (2n+1)))}=ln(2)−γ          γ::  euler−mascheroni                              constant

$$\:\:\:\:\:\:\:\:\:\:\:\:....\:{advanced}\:\:{calculus}\:... \\ $$$$\:\:\:\:\:\:\:{prove}\:\:{that}:::: \\ $$$$\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left\{\frac{\zeta\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{4}^{{n}\:} \:\left(\mathrm{2}{n}+\mathrm{1}\right)}\right\}={ln}\left(\mathrm{2}\right)−\gamma \\ $$$$\:\:\:\:\:\:\:\:\gamma::\:\:{euler}−{mascheroni} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{constant} \\ $$

Answered by Dwaipayan Shikari last updated on 28/Nov/20

Σ_(n=1) ^∞ ((ζ(2n+1))/(4^n (2n+1)))  Σ_(n=1) ^∞ Σ_(k=1) ^∞ (1/(4^n (2n+1)k^((2n+1)) ))  Σ_(k=1) ^∞ Σ_(n≥1) ^∞ (1/(k(4k^2 )^n (2n+1)))  Σ_(k≥1) ^∞ Σ_(n≥1) ^∞ ∫_0 ^1 (x^(2n) /(k(4k^2 )^n ))dx  Σ_(k≥1) ^∞ ∫_0 ^1 Σ_(n≥1) ^∞ (x^(2n) /(k(4k^2 )^n ))dx=Σ_(k≥1) ^∞ ∫_0 ^1 (1/k).((x^2 /(4k^2 ))/(1−(x^2 /(4k^2 )))) dx  =Σ_(k≥1) ^∞ ∫_0 ^1 (1/k).(x^2 /(4k^2 −x^2 ))dx  (1/2)∫_0 ^1 x(Σ_(k≥1) ^∞ (1/k).(1/((2k−x)))−(1/k).(1/((2k+x)))) dx  =−(1/2)(∫_0 ^1 Σ_(k≥1) ^∞ (1/k)−(1/(2k−x))−∫_0 ^1 (1/(2k))−(1/(2k+x)))  =−(1/2)((∫_0 ^1 Σ^∞ (1/k)−(1/(k−(x/2)))+Σ^∞ (1/k)−(1/(k+(x/2))) ))dx  =−γ−(1/2)∫_0 ^1 ψ(−(x/2))+ψ((x/2))  =−γ−[log(Γ((x/2))−log(Γ(−(x/2)))]_0 ^1   =−γ+log(2)  =log(2)−γ

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\zeta\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{4}^{{n}} \left(\mathrm{2}{n}+\mathrm{1}\right)} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{4}^{{n}} \left(\mathrm{2}{n}+\mathrm{1}\right){k}^{\left(\mathrm{2}{n}+\mathrm{1}\right)} } \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{{n}\geqslant\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}\left(\mathrm{4}{k}^{\mathrm{2}} \right)^{{n}} \left(\mathrm{2}{n}+\mathrm{1}\right)} \\ $$$$\underset{{k}\geqslant\mathrm{1}} {\overset{\infty} {\sum}}\underset{{n}\geqslant\mathrm{1}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}{n}} }{{k}\left(\mathrm{4}{k}^{\mathrm{2}} \right)^{{n}} }{dx} \\ $$$$\underset{{k}\geqslant\mathrm{1}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}\geqslant\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{\mathrm{2}{n}} }{{k}\left(\mathrm{4}{k}^{\mathrm{2}} \right)^{{n}} }{dx}=\underset{{k}\geqslant\mathrm{1}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{k}}.\frac{\frac{{x}^{\mathrm{2}} }{\mathrm{4}{k}^{\mathrm{2}} }}{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}{k}^{\mathrm{2}} }}\:{dx} \\ $$$$=\underset{{k}\geqslant\mathrm{1}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{k}}.\frac{{x}^{\mathrm{2}} }{\mathrm{4}{k}^{\mathrm{2}} −{x}^{\mathrm{2}} }{dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} {x}\left(\underset{{k}\geqslant\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}}.\frac{\mathrm{1}}{\left(\mathrm{2}{k}−{x}\right)}−\frac{\mathrm{1}}{{k}}.\frac{\mathrm{1}}{\left(\mathrm{2}{k}+{x}\right)}\right)\:{dx} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\left(\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{k}\geqslant\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}}−\frac{\mathrm{1}}{\mathrm{2}{k}−{x}}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}{k}}−\frac{\mathrm{1}}{\mathrm{2}{k}+{x}}\right) \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\left(\left(\int_{\mathrm{0}} ^{\mathrm{1}} \overset{\infty} {\sum}\frac{\mathrm{1}}{{k}}−\frac{\mathrm{1}}{{k}−\frac{{x}}{\mathrm{2}}}+\overset{\infty} {\sum}\frac{\mathrm{1}}{{k}}−\frac{\mathrm{1}}{{k}+\frac{{x}}{\mathrm{2}}}\:\right)\right){dx} \\ $$$$=−\gamma−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \psi\left(−\frac{{x}}{\mathrm{2}}\right)+\psi\left(\frac{{x}}{\mathrm{2}}\right) \\ $$$$=−\gamma−\left[{log}\left(\Gamma\left(\frac{{x}}{\mathrm{2}}\right)−{log}\left(\Gamma\left(−\frac{{x}}{\mathrm{2}}\right)\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \right. \\ $$$$=−\gamma+{log}\left(\mathrm{2}\right) \\ $$$$={log}\left(\mathrm{2}\right)−\gamma \\ $$

Commented by mnjuly1970 last updated on 28/Nov/20

God keep you  excellent mr payan...

$${God}\:{keep}\:{you} \\ $$$${excellent}\:{mr}\:{payan}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com