Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 123898 by mnjuly1970 last updated on 29/Nov/20

         ... nice  calculus...    find  a series representation   for  the following integral ::      φ=∫_0 ^( 1) cos(h(xln(x))dx

$$\:\:\:\:\:\:\:\:\:...\:{nice}\:\:{calculus}... \\ $$$$\:\:{find}\:\:{a}\:{series}\:{representation} \\ $$$$\:{for}\:\:{the}\:{following}\:{integral}\::: \\ $$$$\:\:\:\:\phi=\int_{\mathrm{0}} ^{\:\mathrm{1}} {cos}\left({h}\left({xln}\left({x}\right)\right){dx}\right. \\ $$$$ \\ $$

Answered by mindispower last updated on 29/Nov/20

∫_0 ^1 ln^a (x)dx=∫_0 ^∞ (−t)^a e^(−t) dt...1  =(−1)^a Γ(a+1).....nice  cos(x)=Σ_(n≥0) (((−1)^n x^(2n) )/((2n)!))  ∅=∫_0 ^1 Σ_(n≥0) (((−1)^n )/(2n!)).(hln(x))^(2n) dx  =Σ_(n≥0) (((−1)^n )/((2n)!))h^(2n)  ∫_0 ^1 ln^(2n) (x)dx....appie 1 a=2n  =Σ_(n≥0) (((−1)^n )/((2n)!))h^(2n) .(((−1)^(2n) Γ(2n+1))/)  =Σ_(n≥0) (−h^2 )^n =(1/(1+h^2 ))

$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}^{{a}} \left({x}\right){dx}=\int_{\mathrm{0}} ^{\infty} \left(−{t}\right)^{{a}} {e}^{−{t}} {dt}...\mathrm{1} \\ $$$$=\left(−\mathrm{1}\right)^{{a}} \Gamma\left({a}+\mathrm{1}\right).....{nice} \\ $$$${cos}\left({x}\right)=\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}} }{\left(\mathrm{2}{n}\right)!} \\ $$$$\emptyset=\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}!}.\left({hln}\left({x}\right)\right)^{\mathrm{2}{n}} {dx} \\ $$$$=\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}\right)!}{h}^{\mathrm{2}{n}} \:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}^{\mathrm{2}{n}} \left({x}\right){dx}....{appie}\:\mathrm{1}\:{a}=\mathrm{2}{n} \\ $$$$=\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}\right)!}{h}^{\mathrm{2}{n}} .\frac{\left(−\mathrm{1}\right)^{\mathrm{2}{n}} \Gamma\left(\mathrm{2}{n}+\mathrm{1}\right)}{} \\ $$$$=\underset{{n}\geqslant\mathrm{0}} {\sum}\left(−{h}^{\mathrm{2}} \right)^{{n}} =\frac{\mathrm{1}}{\mathrm{1}+{h}^{\mathrm{2}} } \\ $$

Commented by Mammadli last updated on 29/Nov/20

Commented by Dwaipayan Shikari last updated on 29/Nov/20

lim_(x→1) ((a(a^(x−1) −1))/(x−1))=a.log(a)

$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{{a}\left({a}^{{x}−\mathrm{1}} −\mathrm{1}\right)}{{x}−\mathrm{1}}={a}.{log}\left({a}\right) \\ $$

Commented by mnjuly1970 last updated on 29/Nov/20

thanks for your work  sir power.but  h:hypbolic

$${thanks}\:{for}\:{your}\:{work} \\ $$$${sir}\:{power}.{but} \\ $$$${h}:{hypbolic} \\ $$

Answered by Dwaipayan Shikari last updated on 29/Nov/20

∫_0 ^1 cos(h(log(x))dx  =∫_0 ^1 ((e^(logx) +e^(−logx) )/2)dx  =(1/2)∫_0 ^1 Σ_(n=0) ^∞ (((logx)^n )/(n!))+(1/2)∫_0 ^1 Σ_(n=0) ^∞ (((−1)^n (logx)^n )/(n!))  =(1/2)(Σ_(n=0) ^∞ (1/(n!))∫_0 ^1 (logx)^n +Σ_(n=0) ^∞ (((−1)^n )/(n!))∫_0 ^1 (logx)^n )  =(1/2)Σ_(n=0) ^∞ (1/(n!))∫_(−∞) ^0 e^t t^n +(1/2)Σ_(n=0) ^∞ (((−1)^n )/(n!))∫_(−∞) ^0 e^t t^n dt      t=−Φ  =(1/2)Σ_(n=0) ^∞ (((−1)^n )/(n!))∫_0 ^∞ e^(−Φ) Φ^n dΦ+(1/2)Σ_(n=0) ^∞ (1/(n!))∫_0 ^∞ e^(−Φ) Φ^n dΦ  =Σ_(n=0) ^∞ (−1)^n ((Γ(n+1))/(2n!))+Σ_(n=0) ^∞ ((Γ(n+1))/(2n!))

$$\int_{\mathrm{0}} ^{\mathrm{1}} {cos}\left({h}\left({log}\left({x}\right)\right){dx}\right. \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{e}^{{logx}} +{e}^{−{logx}} }{\mathrm{2}}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left({logx}\right)^{{n}} }{{n}!}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} \left({logx}\right)^{{n}} }{{n}!} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\int_{\mathrm{0}} ^{\mathrm{1}} \left({logx}\right)^{{n}} +\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\int_{\mathrm{0}} ^{\mathrm{1}} \left({logx}\right)^{{n}} \right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\int_{−\infty} ^{\mathrm{0}} {e}^{{t}} {t}^{{n}} +\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\int_{−\infty} ^{\mathrm{0}} {e}^{{t}} {t}^{{n}} {dt}\:\:\:\:\:\:{t}=−\Phi \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\int_{\mathrm{0}} ^{\infty} {e}^{−\Phi} \Phi^{{n}} {d}\Phi+\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\int_{\mathrm{0}} ^{\infty} {e}^{−\Phi} \Phi^{{n}} {d}\Phi \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{\Gamma\left({n}+\mathrm{1}\right)}{\mathrm{2}{n}!}+\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\Gamma\left({n}+\mathrm{1}\right)}{\mathrm{2}{n}!} \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 29/Nov/20

thank you  so much  sir  payan .  question was corrected :  integrand: cos(h(xln(x)))

$${thank}\:{you}\:\:{so}\:{much}\:\:{sir} \\ $$$${payan}\:. \\ $$$${question}\:{was}\:{corrected}\:: \\ $$$${integrand}:\:{cos}\left({h}\left({xln}\left({x}\right)\right)\right) \\ $$$$ \\ $$

Answered by Dwaipayan Shikari last updated on 29/Nov/20

∫_0 ^1 cos(h(xlogx))dx  =∫_0 ^1 ((e^(xlogx) +e^(−xlogx) )/2)dx  =(1/2)Σ_(n≥0) ^∞ ∫_0 ^1 (((xlogx)^n )/(n!))−(1/2)Σ_(n≥0) (−1)^n ∫_0 ^1 (((xlogx)^n )/(n!))      (t(n+1)=−Φ)  =(1/2)Σ_(n≥0) (1/(n!))∫_(−∞) ^0 e^((n+1)t) t^n dt−(1/2)Σ_(n≥0) (−1)^n (1/(n!))∫_(−∞) ^0 e^(t(n+1)) t^n dt        =(1/2)Σ_(n≥0) (1/(n!)) (((−1))/((n+1)^(n+1) ))∫_0 ^∞ e^(−Φ) Φ^n dΦ−(1/2)Σ_(n≥0) (((−1)^(2n) )/(n!(n+1)^(n+1) ))∫_0 ^∞ e^(−Φ) Φ^n dΦ  =(1/2)Σ_(n≥0) (((−1)^n )/((n+1)^(n+1) ))−(1/2)Σ_(n≥0) (1/((n+1)^((n+1))   ))  =(1/2)((1/1^1 )−(1/2^2 )+(1/3^3 )−(1/4^4 )+...−(1/1^1 )−(1/2^2 )−(1/3^3 )−(1/4^4 )+−..)  =−((1/2^2 )+(1/4^4 )+(1/6^6 )+(1/8^8 )+....)=−Σ_(n≥1) (1/((2n)^(2n) ))

$$\int_{\mathrm{0}} ^{\mathrm{1}} {cos}\left({h}\left({xlogx}\right)\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{e}^{{xlogx}} +{e}^{−{xlogx}} }{\mathrm{2}}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}\geqslant\mathrm{0}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left({xlogx}\right)^{{n}} }{{n}!}−\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}\geqslant\mathrm{0}} {\sum}\left(−\mathrm{1}\right)^{{n}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left({xlogx}\right)^{{n}} }{{n}!}\:\:\:\:\:\:\left({t}\left({n}+\mathrm{1}\right)=−\Phi\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{{n}!}\int_{−\infty} ^{\mathrm{0}} {e}^{\left({n}+\mathrm{1}\right){t}} {t}^{{n}} {dt}−\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}\geqslant\mathrm{0}} {\sum}\left(−\mathrm{1}\right)^{{n}} \frac{\mathrm{1}}{{n}!}\int_{−\infty} ^{\mathrm{0}} {e}^{{t}\left({n}+\mathrm{1}\right)} {t}^{{n}} {dt}\:\:\:\:\:\: \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{{n}!}\:\frac{\left(−\mathrm{1}\right)}{\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\int_{\mathrm{0}} ^{\infty} {e}^{−\Phi} \Phi^{{n}} {d}\Phi−\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{2}{n}} }{{n}!\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\int_{\mathrm{0}} ^{\infty} {e}^{−\Phi} \Phi^{{n}} {d}\Phi \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }−\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\left({n}+\mathrm{1}\right)} \:\:} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{1}} }−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{4}} }+...−\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{1}} }−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{4}} }+−..\right) \\ $$$$=−\left(\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{4}} }+\frac{\mathrm{1}}{\mathrm{6}^{\mathrm{6}} }+\frac{\mathrm{1}}{\mathrm{8}^{\mathrm{8}} }+....\right)=−\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{\left(\mathrm{2}{n}\right)^{\mathrm{2}{n}} } \\ $$

Commented by mnjuly1970 last updated on 29/Nov/20

peace be upon you   sir payan  tireless , powerful   and  unassuming.   grateful and god keep you..

$${peace}\:{be}\:{upon}\:{you}\: \\ $$$${sir}\:{payan} \\ $$$${tireless}\:,\:{powerful}\: \\ $$$${and}\:\:{unassuming}.\: \\ $$$${grateful}\:{and}\:{god}\:{keep}\:{you}.. \\ $$

Commented by Dwaipayan Shikari last updated on 29/Nov/20

With pleasure sir! you are really great man

$${With}\:{pleasure}\:{sir}!\:{you}\:{are}\:{really}\:{great}\:{man} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com