Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 124627 by ajfour last updated on 04/Dec/20

Commented by ajfour last updated on 04/Dec/20

parabola is   y=x^2 ,  radius=1.  Find AB_(min) .

$${parabola}\:{is}\:\:\:{y}={x}^{\mathrm{2}} ,\:\:{radius}=\mathrm{1}. \\ $$$${Find}\:{AB}_{{min}} . \\ $$

Answered by mr W last updated on 05/Dec/20

Commented by mr W last updated on 05/Dec/20

Commented by mr W last updated on 05/Dec/20

C(h,1)  x_D =h−sin θ  y_D =1+cos θ  1+cos θ=(h−sin θ)^2    ...(i)  tan θ=2(h−sin θ)   ...(ii)  ⇒4(1+cos θ)=tan^2  θ=(1/(cos^2  θ))−1  ⇒(1/(cos^3  θ))−(5/(cos θ))−4=0  ⇒((1/(cos θ))+1)((1/(cos^2  θ))−(1/(cos θ))−4)=0  ⇒(1/(cos θ))=((1+(√(17)))/2)=(8/( (√(17))−1))  ⇒θ=cos^(−1) (((√(17))−1)/8)≈67.021343°  ⇒h=sin θ+((tan θ)/2)≈2.099798    x_E =h+sin ϕ  y_E =1+cos ϕ  eqn. of AB:  y=1+cos ϕ−tan ϕ (x−h−sin ϕ)    0=1+cos ϕ−tan ϕ (x_B −h−sin ϕ)  ⇒x_B =h+sin ϕ+((1+cos ϕ)/(tan ϕ))  x_A ^2 =1+cos ϕ−tan ϕ (x_A −h−sin ϕ)  x_A ^2 +tan ϕ x_A −[1+cos ϕ+tan ϕ (h+sin ϕ)]=0  ⇒x_A =(1/2)(−tan ϕ+(√(tan^2  ϕ+4[1+cos ϕ+tan ϕ (h+sin ϕ)]))  s=AB=((x_B −x_A )/(cos ϕ))  s=(1/(cos ϕ)){h+sin ϕ+((1+cos ϕ)/(tan ϕ))+((tan ϕ)/2)−(√(((tan^2  ϕ)/4)+1+cos ϕ+tan ϕ (h+sin ϕ)))}  ⇒s_(min) ≈3.8919 at ϕ=53.4583°

$${C}\left({h},\mathrm{1}\right) \\ $$$${x}_{{D}} ={h}−\mathrm{sin}\:\theta \\ $$$${y}_{{D}} =\mathrm{1}+\mathrm{cos}\:\theta \\ $$$$\mathrm{1}+\mathrm{cos}\:\theta=\left({h}−\mathrm{sin}\:\theta\right)^{\mathrm{2}} \:\:\:...\left({i}\right) \\ $$$$\mathrm{tan}\:\theta=\mathrm{2}\left({h}−\mathrm{sin}\:\theta\right)\:\:\:...\left({ii}\right) \\ $$$$\Rightarrow\mathrm{4}\left(\mathrm{1}+\mathrm{cos}\:\theta\right)=\mathrm{tan}^{\mathrm{2}} \:\theta=\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}} \:\theta}−\mathrm{1} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{3}} \:\theta}−\frac{\mathrm{5}}{\mathrm{cos}\:\theta}−\mathrm{4}=\mathrm{0} \\ $$$$\Rightarrow\left(\frac{\mathrm{1}}{\mathrm{cos}\:\theta}+\mathrm{1}\right)\left(\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}} \:\theta}−\frac{\mathrm{1}}{\mathrm{cos}\:\theta}−\mathrm{4}\right)=\mathrm{0} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{cos}\:\theta}=\frac{\mathrm{1}+\sqrt{\mathrm{17}}}{\mathrm{2}}=\frac{\mathrm{8}}{\:\sqrt{\mathrm{17}}−\mathrm{1}} \\ $$$$\Rightarrow\theta=\mathrm{cos}^{−\mathrm{1}} \frac{\sqrt{\mathrm{17}}−\mathrm{1}}{\mathrm{8}}\approx\mathrm{67}.\mathrm{021343}° \\ $$$$\Rightarrow{h}=\mathrm{sin}\:\theta+\frac{\mathrm{tan}\:\theta}{\mathrm{2}}\approx\mathrm{2}.\mathrm{099798} \\ $$$$ \\ $$$${x}_{{E}} ={h}+\mathrm{sin}\:\varphi \\ $$$${y}_{{E}} =\mathrm{1}+\mathrm{cos}\:\varphi \\ $$$${eqn}.\:{of}\:{AB}: \\ $$$${y}=\mathrm{1}+\mathrm{cos}\:\varphi−\mathrm{tan}\:\varphi\:\left({x}−{h}−\mathrm{sin}\:\varphi\right) \\ $$$$ \\ $$$$\mathrm{0}=\mathrm{1}+\mathrm{cos}\:\varphi−\mathrm{tan}\:\varphi\:\left({x}_{{B}} −{h}−\mathrm{sin}\:\varphi\right) \\ $$$$\Rightarrow{x}_{{B}} ={h}+\mathrm{sin}\:\varphi+\frac{\mathrm{1}+\mathrm{cos}\:\varphi}{\mathrm{tan}\:\varphi} \\ $$$${x}_{{A}} ^{\mathrm{2}} =\mathrm{1}+\mathrm{cos}\:\varphi−\mathrm{tan}\:\varphi\:\left({x}_{{A}} −{h}−\mathrm{sin}\:\varphi\right) \\ $$$${x}_{{A}} ^{\mathrm{2}} +\mathrm{tan}\:\varphi\:{x}_{{A}} −\left[\mathrm{1}+\mathrm{cos}\:\varphi+\mathrm{tan}\:\varphi\:\left({h}+\mathrm{sin}\:\varphi\right)\right]=\mathrm{0} \\ $$$$\Rightarrow{x}_{{A}} =\frac{\mathrm{1}}{\mathrm{2}}\left(−\mathrm{tan}\:\varphi+\sqrt{\mathrm{tan}^{\mathrm{2}} \:\varphi+\mathrm{4}\left[\mathrm{1}+\mathrm{cos}\:\varphi+\mathrm{tan}\:\varphi\:\left({h}+\mathrm{sin}\:\varphi\right)\right]}\right. \\ $$$${s}={AB}=\frac{{x}_{{B}} −{x}_{{A}} }{\mathrm{cos}\:\varphi} \\ $$$${s}=\frac{\mathrm{1}}{\mathrm{cos}\:\varphi}\left\{{h}+\mathrm{sin}\:\varphi+\frac{\mathrm{1}+\mathrm{cos}\:\varphi}{\mathrm{tan}\:\varphi}+\frac{\mathrm{tan}\:\varphi}{\mathrm{2}}−\sqrt{\frac{\mathrm{tan}^{\mathrm{2}} \:\varphi}{\mathrm{4}}+\mathrm{1}+\mathrm{cos}\:\varphi+\mathrm{tan}\:\varphi\:\left({h}+\mathrm{sin}\:\varphi\right)}\right\} \\ $$$$\Rightarrow{s}_{{min}} \approx\mathrm{3}.\mathrm{8919}\:{at}\:\varphi=\mathrm{53}.\mathrm{4583}° \\ $$

Commented by mr W last updated on 05/Dec/20

Commented by ajfour last updated on 05/Dec/20

Understood your solution, Sir!  Thanks a lot.

$${Understood}\:{your}\:{solution},\:{Sir}! \\ $$$${Thanks}\:{a}\:{lot}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com