Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 124888 by mnjuly1970 last updated on 06/Dec/20

:::::  prove that     ::::      φ=∫_0 ^( ∞) ((arctan(x^2 ))/x^2 )dx=(π/( (√2)))

$$:::::\:\:{prove}\:{that}\: \\ $$$$\:\:::::\:\:\:\:\:\:\phi=\int_{\mathrm{0}} ^{\:\infty} \frac{{arctan}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx}=\frac{\pi}{\:\sqrt{\mathrm{2}}} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$

Answered by mnjuly1970 last updated on 06/Dec/20

solution   φ=^(x=(1/t)⇒) ∫_0 ^( ∞) arccot(t^2 )dt=[tarccot(t^2 )]_0 ^∞ +2∫_0 ^( ∞) (t^2 /(1+t^4 ))dt  =^(t^4 =u) (1/2)∫_0 ^( ∞) ((u^(1/2) u^((−3)/4) )/(1+u))du=(1/2)Γ((3/4))Γ((1/4))  =(1/2) (π/(sin((π/4))))=(1/2) ((2π)/( (√2)))=(π/( (√2))) ✓

$${solution} \\ $$$$\:\phi\overset{{x}=\frac{\mathrm{1}}{{t}}\Rightarrow} {=}\int_{\mathrm{0}} ^{\:\infty} {arccot}\left({t}^{\mathrm{2}} \right){dt}=\left[{tarccot}\left({t}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\infty} +\mathrm{2}\int_{\mathrm{0}} ^{\:\infty} \frac{{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{4}} }{dt} \\ $$$$\overset{{t}^{\mathrm{4}} ={u}} {=}\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\infty} \frac{{u}^{\frac{\mathrm{1}}{\mathrm{2}}} {u}^{\frac{−\mathrm{3}}{\mathrm{4}}} }{\mathrm{1}+{u}}{du}=\frac{\mathrm{1}}{\mathrm{2}}\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\frac{\pi}{{sin}\left(\frac{\pi}{\mathrm{4}}\right)}=\frac{\mathrm{1}}{\mathrm{2}}\:\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{2}}}=\frac{\pi}{\:\sqrt{\mathrm{2}}}\:\checkmark \\ $$

Commented by Dwaipayan Shikari last updated on 06/Dec/20

Great sir!

$${Great}\:{sir}! \\ $$

Commented by mnjuly1970 last updated on 06/Dec/20

thanks alot..

$${thanks}\:{alot}.. \\ $$

Answered by Dwaipayan Shikari last updated on 06/Dec/20

∫_0 ^∞ ((tan^(−1) (x^2 ))/x^2 )dx =[ −((tan^(−1) x^2 )/x)]_0 ^∞ +∫_0 ^∞ ((2x)/(x(x^4 +1)))dx  =2∫_0 ^∞ (dx/((x^4 +1)))=∫_0 ^(π/2) (dθ/( (√(tanθ))(tan^2 θ+1)))sec^2 θ       x^2 =tanθ  =2∫_0 ^(π/2) (1/( (√(tanθ))))dθ=2∫_0 ^(π/2) (1/( (√(cotθ))))dθ=I  ⇒2I=2∫_0 ^(π/2) ((sinθ+cosθ)/( (√(sinθcosθ))))dθ  ⇒I=(√2)∫_0 ^(π/2) ((sinθ+cosθ)/( (√(1−(sinθ−cosθ)^2 ))))dθ=(√2)∫_0 ^1 (dt/( (√(1−t^2 ))))  ⇒I=(√2)[sin^(−1) t]_0 ^1 =(π/( (√2)))

$$\int_{\mathrm{0}} ^{\infty} \frac{{tan}^{−\mathrm{1}} \left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx}\:=\left[\:−\frac{{tan}^{−\mathrm{1}} {x}^{\mathrm{2}} }{{x}}\right]_{\mathrm{0}} ^{\infty} +\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{2}{x}}{{x}\left({x}^{\mathrm{4}} +\mathrm{1}\right)}{dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\left({x}^{\mathrm{4}} +\mathrm{1}\right)}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{d}\theta}{\:\sqrt{{tan}\theta}\left({tan}^{\mathrm{2}} \theta+\mathrm{1}\right)}{sec}^{\mathrm{2}} \theta\:\:\:\:\:\:\:{x}^{\mathrm{2}} ={tan}\theta \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{\:\sqrt{{tan}\theta}}{d}\theta=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{\:\sqrt{{cot}\theta}}{d}\theta={I} \\ $$$$\Rightarrow\mathrm{2}{I}=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sin}\theta+{cos}\theta}{\:\sqrt{{sin}\theta{cos}\theta}}{d}\theta \\ $$$$\Rightarrow{I}=\sqrt{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sin}\theta+{cos}\theta}{\:\sqrt{\mathrm{1}−\left({sin}\theta−{cos}\theta\right)^{\mathrm{2}} }}{d}\theta=\sqrt{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dt}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }} \\ $$$$\Rightarrow{I}=\sqrt{\mathrm{2}}\left[{sin}^{−\mathrm{1}} {t}\right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{\pi}{\:\sqrt{\mathrm{2}}} \\ $$

Commented by mnjuly1970 last updated on 06/Dec/20

thank you mr  dwaipayan..

$${thank}\:{you}\:{mr} \\ $$$${dwaipayan}.. \\ $$$$ \\ $$

Answered by mathmax by abdo last updated on 06/Dec/20

I =∫_0 ^∞  ((arctan(x^2 ))/x^2 )dx by psrts  I=[−(1/x)arctan(x^2 )]_0 ^∞ +∫_0 ^∞ (1/x)×((2x)/(1+x^4 ))dx  =2∫_0 ^∞   (dx/(1+x^4 )) =_(x=t^(1/4) )   2 ∫_0 ^∞    (1/(4(1+t)))t^((1/4)−1) dt =(1/2)∫_0 ^∞   (t^((1/4)−1) /(1+t))dt  =(1/2)×(π/(sin((π/4))))=(π/(2×(1/( (√2))))) =(π/( (√2))) ⇒I =(π/( (√2)))

$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{arctan}\left(\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:\mathrm{by}\:\mathrm{psrts}\:\:\mathrm{I}=\left[−\frac{\mathrm{1}}{\mathrm{x}}\mathrm{arctan}\left(\mathrm{x}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\infty} +\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{x}}×\frac{\mathrm{2x}}{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }\mathrm{dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }\:=_{\mathrm{x}=\mathrm{t}^{\frac{\mathrm{1}}{\mathrm{4}}} } \:\:\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\mathrm{4}\left(\mathrm{1}+\mathrm{t}\right)}\mathrm{t}^{\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{1}} \mathrm{dt}\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{t}^{\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{1}} }{\mathrm{1}+\mathrm{t}}\mathrm{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\pi}{\mathrm{sin}\left(\frac{\pi}{\mathrm{4}}\right)}=\frac{\pi}{\mathrm{2}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}}\:=\frac{\pi}{\:\sqrt{\mathrm{2}}}\:\Rightarrow\mathrm{I}\:=\frac{\pi}{\:\sqrt{\mathrm{2}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com