Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 124919 by mathmax by abdo last updated on 07/Dec/20

find U_n =∫_0 ^1 x^n arctan(x)dx with n integr nstural

$$\mathrm{find}\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{n}} \mathrm{arctan}\left(\mathrm{x}\right)\mathrm{dx}\:\mathrm{with}\:\mathrm{n}\:\mathrm{integr}\:\mathrm{nstural} \\ $$

Commented by mindispower last updated on 07/Dec/20

by part=[(x^(n+1) /(n+1))tan^(−1) (x)]_0 ^1 −(1/(n+1))∫_0 ^1 (x^(n+1) /(1+x^2 ))dx  =(π/(4(n+1)))−(1/(n+1))∫_0 ^1 Σ_(k≥0) (−1)^k x^(n+1+2k) dx  =(π/(4(n+1)))−(1/((n+1)))Σ_(k≥0) (((−1)^k )/(n+2+2k))  =(π/(4(n+1)))−(1/(n+1))Σ_(k≥0) (((n+2+2(2k+1))−(n+2+4k))/((n+2+2.2k)(n+2+2(2k+1)))  =(π/(4(n+1)))−(1/(n+1))Σ_(k≥1) (2/((n−2+4k)(n+4k)))  =(π/(4(n+1)))−(1/(8(n+1)))Σ_(k≥1) (1/((((n−1)/4)+k)((n/4)+k)))  =(π/(4(n+1)))−(1/(8(n+1))).((Ψ((n/4))−Ψ(((n−1)/4)))/((n/4)−((n−1)/4)))  =(π/(4(n+1)))−(1/(2(n+1)))(Ψ((n/4))−Ψ(((n−1)/4))),n≥1  n=0  we get (π/4)−∫_0 ^1 (x/(1+x^2 ))=(π/4)−ln((√2))

$${by}\:{part}=\left[\frac{{x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}\mathrm{tan}^{−\mathrm{1}} \left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\frac{\mathrm{1}}{{n}+\mathrm{1}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{n}+\mathrm{1}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$=\frac{\pi}{\mathrm{4}\left({n}+\mathrm{1}\right)}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{k}\geqslant\mathrm{0}} {\sum}\left(−\mathrm{1}\right)^{{k}} {x}^{{n}+\mathrm{1}+\mathrm{2}{k}} {dx} \\ $$$$=\frac{\pi}{\mathrm{4}\left({n}+\mathrm{1}\right)}−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)}\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{{n}+\mathrm{2}+\mathrm{2}{k}} \\ $$$$=\frac{\pi}{\mathrm{4}\left({n}+\mathrm{1}\right)}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left({n}+\mathrm{2}+\mathrm{2}\left(\mathrm{2}{k}+\mathrm{1}\right)\right)−\left({n}+\mathrm{2}+\mathrm{4}{k}\right)}{\left({n}+\mathrm{2}+\mathrm{2}.\mathrm{2}{k}\right)\left({n}+\mathrm{2}+\mathrm{2}\left(\mathrm{2}{k}+\mathrm{1}\right)\right.} \\ $$$$=\frac{\pi}{\mathrm{4}\left({n}+\mathrm{1}\right)}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{2}}{\left({n}−\mathrm{2}+\mathrm{4}{k}\right)\left({n}+\mathrm{4}{k}\right)} \\ $$$$=\frac{\pi}{\mathrm{4}\left({n}+\mathrm{1}\right)}−\frac{\mathrm{1}}{\mathrm{8}\left({n}+\mathrm{1}\right)}\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{\left(\frac{{n}−\mathrm{1}}{\mathrm{4}}+{k}\right)\left(\frac{{n}}{\mathrm{4}}+{k}\right)} \\ $$$$=\frac{\pi}{\mathrm{4}\left({n}+\mathrm{1}\right)}−\frac{\mathrm{1}}{\mathrm{8}\left({n}+\mathrm{1}\right)}.\frac{\Psi\left(\frac{{n}}{\mathrm{4}}\right)−\Psi\left(\frac{{n}−\mathrm{1}}{\mathrm{4}}\right)}{\frac{{n}}{\mathrm{4}}−\frac{{n}−\mathrm{1}}{\mathrm{4}}} \\ $$$$=\frac{\pi}{\mathrm{4}\left({n}+\mathrm{1}\right)}−\frac{\mathrm{1}}{\mathrm{2}\left({n}+\mathrm{1}\right)}\left(\Psi\left(\frac{{n}}{\mathrm{4}}\right)−\Psi\left(\frac{{n}−\mathrm{1}}{\mathrm{4}}\right)\right),{n}\geqslant\mathrm{1} \\ $$$${n}=\mathrm{0} \\ $$$${we}\:{get}\:\frac{\pi}{\mathrm{4}}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}}{\mathrm{1}+{x}^{\mathrm{2}} }=\frac{\pi}{\mathrm{4}}−{ln}\left(\sqrt{\mathrm{2}}\right) \\ $$$$ \\ $$$$ \\ $$

Commented by Bird last updated on 07/Dec/20

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com