Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 12500 by FilupS last updated on 24/Apr/17

Please help explain how to solve  ∫e^(1/x) dx

$$\mathrm{Please}\:\mathrm{help}\:\mathrm{explain}\:\mathrm{how}\:\mathrm{to}\:\mathrm{solve} \\ $$$$\int{e}^{\frac{\mathrm{1}}{{x}}} {dx} \\ $$

Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 24/Apr/17

e^(1/x) =t⇒(1/x)=lnt⇒(lnx+c)^′ =lnt⇒  ∫(lnx+c)^′ dx=∫lntdt=tlnt−∫t×(1/t)dt=  =(lnt−1)t+C(=lnk)  =t.ln((t/e))+lnk=ln[k.((t/e))^t ]  ⇒lnx+c(=lnk^′ )=ln(k((t/e))^t )⇒k^′ x=k((t/e))^t   x=b.((e^(1/x) /e))^e^(1/x)  =b.(e^((1/x)−1) )^e^(1/x)  =b.(e^((1−x)/x)   )^e^(1/x)    m=(1/b)=constant.    b=(k/k^′ )>0  lnx=lnb+e^(1/x) .ln(e^((1−x)/x) )=lnb+e^(1/x) .(((1−x)/x))  ln(x/b)=e^(1/x) .(((1−x)/x))⇒e^(1/x) =((xln(mx))/(1−x))  I=∫((xln(mx))/(1−x))dx=∫(((ln(mx))/(1−x))−ln(mx))dx=  I_1 =∫ln(mx)dx=xln(mx)−∫x×(m/(mx))dx=  =xln(mx)−x+n=x(ln(mx)−1)+n.  I_2 =∫((ln(mx))/(1−x))dx=ln(1−x).ln(mx)−∫ln(1−x)×(1/x)dx=  I_3 =∫ln(1−x)×(1/x)dx=lnx.ln(1−x)−∫((−lnx)/(1−x))dx=  =lnx.ln(1−x)+lnx.ln(1−x)−∫((ln(1−x))/x)dx(=I_3 )  I_3 =lnx.ln(1−x)+p  I=I_1 +I_2 +I_3 =x(ln(mx)−1)+n+                                +ln(1−x).ln(mx)−I_3                                   +I_3 ⇒  I=[x+ln(1−x)].ln(mx)−x+n .  m,n,p∈R, are constants.

$${e}^{\frac{\mathrm{1}}{{x}}} ={t}\Rightarrow\frac{\mathrm{1}}{{x}}={lnt}\Rightarrow\left({lnx}+{c}\right)^{'} ={lnt}\Rightarrow \\ $$$$\int\left({lnx}+{c}\right)^{'} {dx}=\int{lntdt}={tlnt}−\int{t}×\frac{\mathrm{1}}{{t}}{dt}= \\ $$$$=\left({lnt}−\mathrm{1}\right){t}+\boldsymbol{{C}}\left(={lnk}\right) \\ $$$$={t}.{ln}\left(\frac{{t}}{{e}}\right)+{lnk}={ln}\left[{k}.\left(\frac{{t}}{{e}}\right)^{{t}} \right] \\ $$$$\Rightarrow{lnx}+{c}\left(={lnk}^{'} \right)={ln}\left({k}\left(\frac{{t}}{{e}}\right)^{{t}} \right)\Rightarrow\boldsymbol{{k}}^{'} \boldsymbol{{x}}=\boldsymbol{{k}}\left(\frac{{t}}{{e}}\right)^{{t}} \\ $$$$\boldsymbol{{x}}={b}.\left(\frac{{e}^{\frac{\mathrm{1}}{{x}}} }{{e}}\right)^{\boldsymbol{{e}}^{\frac{\mathrm{1}}{\boldsymbol{{x}}}} } ={b}.\left({e}^{\frac{\mathrm{1}}{{x}}−\mathrm{1}} \right)^{{e}^{\frac{\mathrm{1}}{{x}}} } ={b}.\left({e}^{\frac{\mathrm{1}−{x}}{{x}}} \:\:\right)^{{e}^{\frac{\mathrm{1}}{{x}}} } \\ $$$${m}=\frac{\mathrm{1}}{{b}}={constant}.\:\:\:\:{b}=\frac{{k}}{{k}^{'} }>\mathrm{0} \\ $$$${lnx}={lnb}+{e}^{\frac{\mathrm{1}}{{x}}} .{ln}\left({e}^{\frac{\mathrm{1}−{x}}{{x}}} \right)={lnb}+{e}^{\frac{\mathrm{1}}{{x}}} .\left(\frac{\mathrm{1}−{x}}{{x}}\right) \\ $$$${ln}\frac{{x}}{{b}}={e}^{\frac{\mathrm{1}}{{x}}} .\left(\frac{\mathrm{1}−{x}}{{x}}\right)\Rightarrow{e}^{\frac{\mathrm{1}}{{x}}} =\frac{{xln}\left({mx}\right)}{\mathrm{1}−{x}} \\ $$$$\boldsymbol{{I}}=\int\frac{{xln}\left({mx}\right)}{\mathrm{1}−{x}}{dx}=\int\left(\frac{{ln}\left({mx}\right)}{\mathrm{1}−{x}}−{ln}\left({mx}\right)\right){dx}= \\ $$$${I}_{\mathrm{1}} =\int{ln}\left({mx}\right){dx}={xln}\left({mx}\right)−\int{x}×\frac{{m}}{{mx}}{dx}= \\ $$$$={xln}\left({mx}\right)−{x}+\boldsymbol{{n}}=\boldsymbol{{x}}\left(\boldsymbol{{ln}}\left(\boldsymbol{{mx}}\right)−\mathrm{1}\right)+\boldsymbol{{n}}. \\ $$$$\boldsymbol{{I}}_{\mathrm{2}} =\int\frac{{ln}\left({mx}\right)}{\mathrm{1}−{x}}{dx}={ln}\left(\mathrm{1}−{x}\right).{ln}\left({mx}\right)−\int{ln}\left(\mathrm{1}−{x}\right)×\frac{\mathrm{1}}{{x}}{dx}= \\ $$$${I}_{\mathrm{3}} =\int{ln}\left(\mathrm{1}−{x}\right)×\frac{\mathrm{1}}{{x}}{dx}={lnx}.{ln}\left(\mathrm{1}−{x}\right)−\int\frac{−{lnx}}{\mathrm{1}−{x}}{dx}= \\ $$$$={lnx}.{ln}\left(\mathrm{1}−{x}\right)+{lnx}.{ln}\left(\mathrm{1}−{x}\right)−\int\frac{{ln}\left(\mathrm{1}−{x}\right)}{{x}}{dx}\left(={I}_{\mathrm{3}} \right) \\ $$$${I}_{\mathrm{3}} ={lnx}.{ln}\left(\mathrm{1}−{x}\right)+{p} \\ $$$$\boldsymbol{{I}}={I}_{\mathrm{1}} +{I}_{\mathrm{2}} +{I}_{\mathrm{3}} =\boldsymbol{{x}}\left(\boldsymbol{{ln}}\left(\boldsymbol{{mx}}\right)−\mathrm{1}\right)+\boldsymbol{{n}}+ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\boldsymbol{{ln}}\left(\mathrm{1}−\boldsymbol{{x}}\right).\boldsymbol{{ln}}\left(\boldsymbol{{mx}}\right)−\boldsymbol{{I}}_{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\boldsymbol{{I}}_{\mathrm{3}} \Rightarrow \\ $$$$\boldsymbol{{I}}=\left[\boldsymbol{{x}}+\boldsymbol{{ln}}\left(\mathrm{1}−\boldsymbol{{x}}\right)\right].\boldsymbol{{ln}}\left(\boldsymbol{{mx}}\right)−\boldsymbol{{x}}+\boldsymbol{{n}}\:. \\ $$$$\boldsymbol{{m}},\boldsymbol{{n}},\boldsymbol{{p}}\in{R},\:\boldsymbol{{are}}\:\boldsymbol{{constants}}. \\ $$

Commented by mrW1 last updated on 24/Apr/17

Can you check if (dI/dx)=e^(1/x)  ?

$${Can}\:{you}\:{check}\:{if}\:\frac{{dI}}{{dx}}={e}^{\frac{\mathrm{1}}{{x}}} \:? \\ $$

Commented by ajfour last updated on 24/Apr/17

line #3 :  (t−1)ln t  should be                       (ln t−1)t .

$${line}\:#\mathrm{3}\::\:\:\left({t}−\mathrm{1}\right)\mathrm{ln}\:{t}\:\:{should}\:{be} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{ln}\:{t}−\mathrm{1}\right){t}\:. \\ $$

Commented by FilupS last updated on 24/Apr/17

according to wolframalpha:  ∫e^(1/x) dx=e^(1/x) x−Ei((1/x))  Ei(x)=−∫_(−x) ^( ∞) (1/t)e^(−t) dt

$$\mathrm{according}\:\mathrm{to}\:\mathrm{wolframalpha}: \\ $$$$\int{e}^{\frac{\mathrm{1}}{{x}}} {dx}={e}^{\frac{\mathrm{1}}{{x}}} {x}−\mathrm{Ei}\left(\frac{\mathrm{1}}{{x}}\right) \\ $$$$\mathrm{Ei}\left({x}\right)=−\int_{−{x}} ^{\:\infty} \frac{\mathrm{1}}{{t}}{e}^{−{t}} {dt} \\ $$

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 24/Apr/17

you are right.it is fixed.

$${you}\:{are}\:{right}.{it}\:{is}\:{fixed}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com