Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 125907 by ajfour last updated on 15/Dec/20

Commented by ajfour last updated on 15/Dec/20

Find shortest distance between  cicumference of disc in y-z  plane and the parabolic curve  in x-y plane.

$${Find}\:{shortest}\:{distance}\:{between} \\ $$$${cicumference}\:{of}\:{disc}\:{in}\:{y}-{z} \\ $$$${plane}\:{and}\:{the}\:{parabolic}\:{curve} \\ $$$${in}\:{x}-{y}\:{plane}. \\ $$

Answered by ajfour last updated on 15/Dec/20

Circle eq.  (y−c)^2 +(z−R)^2 =R^2   or  y=c−Rsin θ  ;  z=R−Rcos θ  parabola eq.  q=p^2   shortest distance PC be s.  P(p,p^2 ,0)  C(0,y,z)  s^2 =p^2 +(p^2 −y)^2 +z^2       =q+(q+Rsin θ−c)^2                +R^2 (1−cos θ)^2   (∂s^2 /∂q)=1+2(q+Rsin θ−c)=0  ⇒   q+Rsin θ=c−(1/2)  ⇒  s^2 =q+(1/4)+R^2 (1−cos θ)^2   (∂s^2 /∂θ)=2(Rcos θ)(q+Rsin θ−c)             +2R^2 sin θ(1−cos θ) = 0  ⇒  2Rsin θ(1−cos θ)=cos θ  ⇒  tan θ−sin θ=(1/(2R))  let  tan (θ/2)=r  ⇒  ((2r)/(1−r^2 ))−((2r)/(1+r^2 ))=(1/(2R))  ⇒  8Rr^3 =1−r^4   ⇒   r^4 +8Rr^3 −1=0   ....

$${Circle}\:{eq}. \\ $$$$\left({y}−{c}\right)^{\mathrm{2}} +\left({z}−{R}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$${or}\:\:{y}={c}−{R}\mathrm{sin}\:\theta\:\:;\:\:{z}={R}−{R}\mathrm{cos}\:\theta \\ $$$${parabola}\:{eq}. \\ $$$${q}={p}^{\mathrm{2}} \\ $$$${shortest}\:{distance}\:{PC}\:{be}\:{s}. \\ $$$${P}\left({p},{p}^{\mathrm{2}} ,\mathrm{0}\right)\:\:{C}\left(\mathrm{0},{y},{z}\right) \\ $$$${s}^{\mathrm{2}} ={p}^{\mathrm{2}} +\left({p}^{\mathrm{2}} −{y}\right)^{\mathrm{2}} +{z}^{\mathrm{2}} \\ $$$$\:\:\:\:={q}+\left({q}+{R}\mathrm{sin}\:\theta−{c}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:+{R}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}\:\theta\right)^{\mathrm{2}} \\ $$$$\frac{\partial{s}^{\mathrm{2}} }{\partial{q}}=\mathrm{1}+\mathrm{2}\left({q}+{R}\mathrm{sin}\:\theta−{c}\right)=\mathrm{0} \\ $$$$\Rightarrow\:\:\:{q}+{R}\mathrm{sin}\:\theta={c}−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\:\:{s}^{\mathrm{2}} ={q}+\frac{\mathrm{1}}{\mathrm{4}}+{R}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}\:\theta\right)^{\mathrm{2}} \\ $$$$\frac{\partial{s}^{\mathrm{2}} }{\partial\theta}=\mathrm{2}\left({R}\mathrm{cos}\:\theta\right)\left({q}+{R}\mathrm{sin}\:\theta−{c}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:+\mathrm{2}{R}^{\mathrm{2}} \mathrm{sin}\:\theta\left(\mathrm{1}−\mathrm{cos}\:\theta\right)\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\:\mathrm{2}{R}\mathrm{sin}\:\theta\left(\mathrm{1}−\mathrm{cos}\:\theta\right)=\mathrm{cos}\:\theta \\ $$$$\Rightarrow\:\:\mathrm{tan}\:\theta−\mathrm{sin}\:\theta=\frac{\mathrm{1}}{\mathrm{2}{R}} \\ $$$${let}\:\:\mathrm{tan}\:\frac{\theta}{\mathrm{2}}={r} \\ $$$$\Rightarrow\:\:\frac{\mathrm{2}{r}}{\mathrm{1}−{r}^{\mathrm{2}} }−\frac{\mathrm{2}{r}}{\mathrm{1}+{r}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}{R}} \\ $$$$\Rightarrow\:\:\mathrm{8}{Rr}^{\mathrm{3}} =\mathrm{1}−{r}^{\mathrm{4}} \\ $$$$\Rightarrow\:\:\:{r}^{\mathrm{4}} +\mathrm{8}{Rr}^{\mathrm{3}} −\mathrm{1}=\mathrm{0} \\ $$$$\:....\:\: \\ $$

Answered by mr W last updated on 15/Dec/20

Commented by mr W last updated on 15/Dec/20

let′s say the point B has the shortest  distance to the parabola at point D.  let BD=s  such that d is minimum, the sphere  with center at B and radius d must  tangent the parabola at D.  let CD=r  the circle with center at C and radius  r must tangent the parabola at D.  let OC=h=c−R sin θ

$${let}'{s}\:{say}\:{the}\:{point}\:{B}\:{has}\:{the}\:{shortest} \\ $$$${distance}\:{to}\:{the}\:{parabola}\:{at}\:{point}\:{D}. \\ $$$${let}\:{BD}={s} \\ $$$${such}\:{that}\:{d}\:{is}\:{minimum},\:{the}\:{sphere} \\ $$$${with}\:{center}\:{at}\:{B}\:{and}\:{radius}\:{d}\:{must} \\ $$$${tangent}\:{the}\:{parabola}\:{at}\:{D}. \\ $$$${let}\:{CD}={r} \\ $$$${the}\:{circle}\:{with}\:{center}\:{at}\:{C}\:{and}\:{radius} \\ $$$${r}\:{must}\:{tangent}\:{the}\:{parabola}\:{at}\:{D}. \\ $$$${let}\:{OC}={h}={c}−{R}\:\mathrm{sin}\:\theta \\ $$

Commented by mr W last updated on 15/Dec/20

Commented by mr W last updated on 15/Dec/20

y=x^2   x^2 +(y−h)^2 =r^2   y^2 −(2h−1)y+h^2 −r^2 =0  for tangency:  Δ=(2h−1)^2 −4(h^2 −r^2 )=0  −4h+1+4r^2 =0  ⇒r^2 =((4h−1)/4)  h=c−R sin θ  s^2 =r^2 +R^2 (1−cos θ)^2   s^2 =c−(1/4)+R[R(1−cos θ)^2 −sin θ]  ((d(s^2 ))/dθ)=0 ⇒2R(1−cos θ)sin θ−cos θ=0  ⇒tan θ−sin θ=(1/(2R))  with t=tan (θ/2)  ⇒((2t)/(1−t^2 ))−((2t)/(1+t^2 ))=(1/(2R))  ⇒t^4 +8Rt^3 −1=0  ...

$${y}={x}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +\left({y}−{h}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$${y}^{\mathrm{2}} −\left(\mathrm{2}{h}−\mathrm{1}\right){y}+{h}^{\mathrm{2}} −{r}^{\mathrm{2}} =\mathrm{0} \\ $$$${for}\:{tangency}: \\ $$$$\Delta=\left(\mathrm{2}{h}−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}\left({h}^{\mathrm{2}} −{r}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$−\mathrm{4}{h}+\mathrm{1}+\mathrm{4}{r}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{r}^{\mathrm{2}} =\frac{\mathrm{4}{h}−\mathrm{1}}{\mathrm{4}} \\ $$$${h}={c}−{R}\:\mathrm{sin}\:\theta \\ $$$${s}^{\mathrm{2}} ={r}^{\mathrm{2}} +{R}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}\:\theta\right)^{\mathrm{2}} \\ $$$${s}^{\mathrm{2}} ={c}−\frac{\mathrm{1}}{\mathrm{4}}+{R}\left[{R}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)^{\mathrm{2}} −\mathrm{sin}\:\theta\right] \\ $$$$\frac{{d}\left({s}^{\mathrm{2}} \right)}{{d}\theta}=\mathrm{0}\:\Rightarrow\mathrm{2}{R}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)\mathrm{sin}\:\theta−\mathrm{cos}\:\theta=\mathrm{0} \\ $$$$\Rightarrow\mathrm{tan}\:\theta−\mathrm{sin}\:\theta=\frac{\mathrm{1}}{\mathrm{2}{R}} \\ $$$${with}\:{t}=\mathrm{tan}\:\frac{\theta}{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{2}{t}}{\mathrm{1}−{t}^{\mathrm{2}} }−\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}{R}} \\ $$$$\Rightarrow{t}^{\mathrm{4}} +\mathrm{8}{Rt}^{\mathrm{3}} −\mathrm{1}=\mathrm{0} \\ $$$$... \\ $$

Commented by ajfour last updated on 15/Dec/20

Thank you still, Sir!

$${Thank}\:{you}\:{still},\:{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com