Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 126363 by ajfour last updated on 19/Dec/20

x^3 −x−c=0       ;    [c<2/(3(√3))]  (Solve by a  method other than  trigonometric solution).

$${x}^{\mathrm{3}} −{x}−{c}=\mathrm{0}\:\:\:\:\:\:\:;\:\:\:\:\left[{c}<\mathrm{2}/\left(\mathrm{3}\sqrt{\mathrm{3}}\right)\right] \\ $$ $$\left({Solve}\:{by}\:{a}\:\:{method}\:{other}\:{than}\right. \\ $$ $$\left.{trigonometric}\:{solution}\right). \\ $$

Answered by mathmax by abdo last updated on 19/Dec/20

x^3 −x−c=0 let x=u+v  so e⇒(u+v)^3 −(u+v)−c=0 ⇒  u^3  +v^3  +3uv(u+v)−(u+v)−c=0 ⇒  u^3  +v^3  −c +(3uv−1)(u+v)=0 ⇒ { ((u^3  +v^3  =c)),((3uv−1=0)) :}  ⇒ { ((u^3  +v^3  =c     ⇒          { ((u^3  +v^3  =c)),((u^3 v^3  =(1/(27)))) :})),((uv=(1/3))) :}  so u^3  and v^3  are solution of  t^2 −ct +(1/(27))=0  Δ=c^2 −(4/(27)) <0 due to   c<(2/(3(√3))) ⇒t_1 =((c+i(√((4/(27))−c^2 )))/2)  t_2 =((c−i(√((4/(27))−c^2 )))/2) ⇒x=^3 (√((c+i(√((4/(27))−c^2 )))/2)) +^3 (√((c−i(√((4/(27))−c^2 )))/2))

$$\mathrm{x}^{\mathrm{3}} −\mathrm{x}−\mathrm{c}=\mathrm{0}\:\mathrm{let}\:\mathrm{x}=\mathrm{u}+\mathrm{v}\:\:\mathrm{so}\:\mathrm{e}\Rightarrow\left(\mathrm{u}+\mathrm{v}\right)^{\mathrm{3}} −\left(\mathrm{u}+\mathrm{v}\right)−\mathrm{c}=\mathrm{0}\:\Rightarrow \\ $$ $$\mathrm{u}^{\mathrm{3}} \:+\mathrm{v}^{\mathrm{3}} \:+\mathrm{3uv}\left(\mathrm{u}+\mathrm{v}\right)−\left(\mathrm{u}+\mathrm{v}\right)−\mathrm{c}=\mathrm{0}\:\Rightarrow \\ $$ $$\mathrm{u}^{\mathrm{3}} \:+\mathrm{v}^{\mathrm{3}} \:−\mathrm{c}\:+\left(\mathrm{3uv}−\mathrm{1}\right)\left(\mathrm{u}+\mathrm{v}\right)=\mathrm{0}\:\Rightarrow\begin{cases}{\mathrm{u}^{\mathrm{3}} \:+\mathrm{v}^{\mathrm{3}} \:=\mathrm{c}}\\{\mathrm{3uv}−\mathrm{1}=\mathrm{0}}\end{cases} \\ $$ $$\Rightarrow\begin{cases}{\mathrm{u}^{\mathrm{3}} \:+\mathrm{v}^{\mathrm{3}} \:=\mathrm{c}\:\:\:\:\:\Rightarrow\:\:\:\:\:\:\:\:\:\begin{cases}{\mathrm{u}^{\mathrm{3}} \:+\mathrm{v}^{\mathrm{3}} \:=\mathrm{c}}\\{\mathrm{u}^{\mathrm{3}} \mathrm{v}^{\mathrm{3}} \:=\frac{\mathrm{1}}{\mathrm{27}}}\end{cases}}\\{\mathrm{uv}=\frac{\mathrm{1}}{\mathrm{3}}}\end{cases} \\ $$ $$\mathrm{so}\:\mathrm{u}^{\mathrm{3}} \:\mathrm{and}\:\mathrm{v}^{\mathrm{3}} \:\mathrm{are}\:\mathrm{solution}\:\mathrm{of}\:\:\mathrm{t}^{\mathrm{2}} −\mathrm{ct}\:+\frac{\mathrm{1}}{\mathrm{27}}=\mathrm{0} \\ $$ $$\Delta=\mathrm{c}^{\mathrm{2}} −\frac{\mathrm{4}}{\mathrm{27}}\:<\mathrm{0}\:\mathrm{due}\:\mathrm{to}\:\:\:\mathrm{c}<\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{3}}}\:\Rightarrow\mathrm{t}_{\mathrm{1}} =\frac{\mathrm{c}+\mathrm{i}\sqrt{\frac{\mathrm{4}}{\mathrm{27}}−\mathrm{c}^{\mathrm{2}} }}{\mathrm{2}} \\ $$ $$\mathrm{t}_{\mathrm{2}} =\frac{\mathrm{c}−\mathrm{i}\sqrt{\frac{\mathrm{4}}{\mathrm{27}}−\mathrm{c}^{\mathrm{2}} }}{\mathrm{2}}\:\Rightarrow\mathrm{x}=^{\mathrm{3}} \sqrt{\frac{\mathrm{c}+\mathrm{i}\sqrt{\frac{\mathrm{4}}{\mathrm{27}}−\mathrm{c}^{\mathrm{2}} }}{\mathrm{2}}}\:+^{\mathrm{3}} \sqrt{\frac{\mathrm{c}−\mathrm{i}\sqrt{\frac{\mathrm{4}}{\mathrm{27}}−\mathrm{c}^{\mathrm{2}} }}{\mathrm{2}}} \\ $$

Commented byMJS_new last updated on 19/Dec/20

Cardano′s solution is not valid for D<0

$$\mathrm{Cardano}'\mathrm{s}\:\mathrm{solution}\:\mathrm{is}\:\mathrm{not}\:\mathrm{valid}\:\mathrm{for}\:{D}<\mathrm{0} \\ $$

Commented bymathmax by abdo last updated on 20/Dec/20

why sir?

$$\mathrm{why}\:\mathrm{sir}? \\ $$

Commented byMJS_new last updated on 20/Dec/20

x^3 +px+q=0; D=(p^3 /(27))+(q^2 /4)  if D<0 we have 3 real roots we cannot find  using Cardano. see below article

$${x}^{\mathrm{3}} +{px}+{q}=\mathrm{0};\:{D}=\frac{{p}^{\mathrm{3}} }{\mathrm{27}}+\frac{{q}^{\mathrm{2}} }{\mathrm{4}} \\ $$ $$\mathrm{if}\:{D}<\mathrm{0}\:\mathrm{we}\:\mathrm{have}\:\mathrm{3}\:\mathrm{real}\:\mathrm{roots}\:\mathrm{we}\:\mathrm{cannot}\:\mathrm{find} \\ $$ $$\mathrm{using}\:\mathrm{Cardano}.\:\mathrm{see}\:\mathrm{below}\:\mathrm{article} \\ $$

Commented byMJS_new last updated on 20/Dec/20

https://en.m.wikipedia.org/wiki/Casus_irreducibilis

Commented byMJS_new last updated on 20/Dec/20

don′t get confused, in this article Δ is not  equal to the D I use. still it′s true. you cannot  reduce the complex number to its real value  ⇒ the solution is possible to write down but  impossible to use

$$\mathrm{don}'\mathrm{t}\:\mathrm{get}\:\mathrm{confused},\:\mathrm{in}\:\mathrm{this}\:\mathrm{article}\:\Delta\:\mathrm{is}\:{not} \\ $$ $$\mathrm{equal}\:\mathrm{to}\:\mathrm{the}\:{D}\:\mathrm{I}\:\mathrm{use}.\:\mathrm{still}\:\mathrm{it}'\mathrm{s}\:\mathrm{true}.\:\mathrm{you}\:\mathrm{cannot} \\ $$ $$\mathrm{reduce}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{number}\:\mathrm{to}\:\mathrm{its}\:\mathrm{real}\:\mathrm{value} \\ $$ $$\Rightarrow\:\mathrm{the}\:\mathrm{solution}\:\mathrm{is}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{write}\:\mathrm{down}\:\mathrm{but} \\ $$ $$\mathrm{impossible}\:\mathrm{to}\:\mathrm{use} \\ $$

Commented bymr W last updated on 20/Dec/20

that′s the point!  certainly we can express the roots  using cardano′s formula using   complex numbers, but to calculate  the real values out from the formula,  we must at the end come to the  trigonometric expression form.  therefore cardano′s formula is not  really useful in this case.

$${that}'{s}\:{the}\:{point}! \\ $$ $${certainly}\:{we}\:{can}\:{express}\:{the}\:{roots} \\ $$ $${using}\:{cardano}'{s}\:{formula}\:{using}\: \\ $$ $${complex}\:{numbers},\:{but}\:{to}\:{calculate} \\ $$ $${the}\:{real}\:{values}\:{out}\:{from}\:{the}\:{formula}, \\ $$ $${we}\:{must}\:{at}\:{the}\:{end}\:{come}\:{to}\:{the} \\ $$ $${trigonometric}\:{expression}\:{form}. \\ $$ $${therefore}\:{cardano}'{s}\:{formula}\:{is}\:{not} \\ $$ $${really}\:{useful}\:{in}\:{this}\:{case}. \\ $$

Commented bymathmax by abdo last updated on 20/Dec/20

nevermind thank you sir

$$\mathrm{nevermind}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented byTawa11 last updated on 23/Jul/21

great

$$\mathrm{great} \\ $$

Answered by ajfour last updated on 19/Dec/20

x=t+h  ⇒  t^3 +3ht^2 +(3h^2 −1)t+h^3 −h−c=0  let  t=p  be also a root.   ⇒  t^4 +(3h−p)t^3 +(3h^2 −1−3ph)t^2   +[h^3 −h−c−p(3h^2 −1)]t  −p(h^3 −h−c)=0  lets add to it  qt{t^3 +3ht^2 +(3h^2 −1)t+h^3 −h−c}=0  ⇒  (1+q)t^4 +(3h−p+3qh)t^3 +  [3h^2 −1−3ph+q(3h^2 −1)]t^2 +  [h^3 −h−c−p(3h^2 −1)+q(h^3 −h−c)]t  −p(h^3 −h−c)=0  Now let  3ph=(1+q)(3h^2 −1);[coeff. of t^2 =0]  ⇒ 3ht^4 +(6h^2 +1)t^3 +  [3h(h^3 −h−c)−(3h^2 −1)^2 ]t  −(3h^2 −1)(h^3 −h−c)=0  let   h^3 +mh−c=0   ⇒    h^3 −h−c=−(m+1)h     ⇒      3ht^4 +(6h^2 +1)t^3       −[(3h^2 −1)^2 +3(m+1)h^2 ]t      +(m+1)h(3h^2 −1)=0    ⇒  ......

$${x}={t}+{h}\:\:\Rightarrow \\ $$ $${t}^{\mathrm{3}} +\mathrm{3}{ht}^{\mathrm{2}} +\left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right){t}+{h}^{\mathrm{3}} −{h}−{c}=\mathrm{0} \\ $$ $${let}\:\:{t}={p}\:\:{be}\:{also}\:{a}\:{root}.\:\:\:\Rightarrow \\ $$ $${t}^{\mathrm{4}} +\left(\mathrm{3}{h}−{p}\right){t}^{\mathrm{3}} +\left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}−\mathrm{3}{ph}\right){t}^{\mathrm{2}} \\ $$ $$+\left[{h}^{\mathrm{3}} −{h}−{c}−{p}\left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right)\right]{t} \\ $$ $$−{p}\left({h}^{\mathrm{3}} −{h}−{c}\right)=\mathrm{0} \\ $$ $${lets}\:{add}\:{to}\:{it} \\ $$ $${qt}\left\{{t}^{\mathrm{3}} +\mathrm{3}{ht}^{\mathrm{2}} +\left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right){t}+{h}^{\mathrm{3}} −{h}−{c}\right\}=\mathrm{0} \\ $$ $$\Rightarrow \\ $$ $$\left(\mathrm{1}+{q}\right){t}^{\mathrm{4}} +\left(\mathrm{3}{h}−{p}+\mathrm{3}{qh}\right){t}^{\mathrm{3}} + \\ $$ $$\left[\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}−\mathrm{3}{ph}+{q}\left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right)\right]{t}^{\mathrm{2}} + \\ $$ $$\left[{h}^{\mathrm{3}} −{h}−{c}−{p}\left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right)+{q}\left({h}^{\mathrm{3}} −{h}−{c}\right)\right]{t} \\ $$ $$−{p}\left({h}^{\mathrm{3}} −{h}−{c}\right)=\mathrm{0} \\ $$ $${Now}\:{let} \\ $$ $$\mathrm{3}{ph}=\left(\mathrm{1}+{q}\right)\left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right);\left[{coeff}.\:{of}\:{t}^{\mathrm{2}} =\mathrm{0}\right] \\ $$ $$\Rightarrow\:\mathrm{3}{ht}^{\mathrm{4}} +\left(\mathrm{6}{h}^{\mathrm{2}} +\mathrm{1}\right){t}^{\mathrm{3}} + \\ $$ $$\left[\mathrm{3}{h}\left({h}^{\mathrm{3}} −{h}−{c}\right)−\left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} \right]{t} \\ $$ $$−\left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right)\left({h}^{\mathrm{3}} −{h}−{c}\right)=\mathrm{0} \\ $$ $${let}\:\:\:{h}^{\mathrm{3}} +{mh}−{c}=\mathrm{0}\:\:\:\Rightarrow\: \\ $$ $$\:{h}^{\mathrm{3}} −{h}−{c}=−\left({m}+\mathrm{1}\right){h}\:\:\: \\ $$ $$\Rightarrow\:\:\:\:\:\:\mathrm{3}{ht}^{\mathrm{4}} +\left(\mathrm{6}{h}^{\mathrm{2}} +\mathrm{1}\right){t}^{\mathrm{3}} \\ $$ $$\:\:\:\:−\left[\left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} +\mathrm{3}\left({m}+\mathrm{1}\right){h}^{\mathrm{2}} \right]{t} \\ $$ $$\:\:\:\:+\left({m}+\mathrm{1}\right){h}\left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right)=\mathrm{0}\:\:\:\:\Rightarrow \\ $$ $$...... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com