Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 126465 by mnjuly1970 last updated on 20/Dec/20

            ... nice  calculus...       Evaluate ...          φ = ∫_0 ^( 1) ((sin(ln(x))−ln(x))/(ln^2 (x)))dx             Ans :: ln((√2) )+(π/4) −1 ...

$$\:\:\:\:\:\:\:\:\:\:\:\:...\:{nice}\:\:{calculus}... \\ $$$$\:\:\:\:\:\mathscr{E}{valuate}\:... \\ $$$$\:\:\:\:\:\:\:\:\phi\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{sin}\left({ln}\left({x}\right)\right)−{ln}\left({x}\right)}{{ln}^{\mathrm{2}} \left({x}\right)}{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathscr{A}{ns}\:::\:{ln}\left(\sqrt{\mathrm{2}}\:\right)+\frac{\pi}{\mathrm{4}}\:−\mathrm{1}\:... \\ $$

Commented by talminator2856791 last updated on 22/Dec/20

 do you have more difficult question than this

$$\:\mathrm{do}\:\mathrm{you}\:\mathrm{have}\:\mathrm{more}\:\mathrm{difficult}\:\mathrm{question}\:\mathrm{than}\:\mathrm{this} \\ $$

Answered by mindispower last updated on 23/Dec/20

−ln(x)=t  =∫_0 ^∞ ((t−sin(t))/t^2 )e^(−t)   sin(t)−t=Σ_(k≥1) (((−1)^k t^(2k+1) )/((2k+1)!))  =Σ_(k≥1) ∫_0 ^∞ (((−1)^k )/((2k+1)!))t^(2k−1) e^(−t) dt  =Σ_(k≥1) (((−1)^k )/((2k+1)!))Γ(2k)  =Σ_(k≥1) (((−1)^k )/(2k(2k+1)))=Σ_(k≥1) (((−1)^k )/(2k))−Σ_(k≥1) (((−1)^k )/(2k+1))  =(1/2)Σ_(k≥1) (−1)^k ∫_0 ^1 x^(k−1)   =(1/2)∫_0 ^1 (1/x)Σ_(k≥1) (−x)^k dx−Σ_(k≥1) ∫_0 ^1 (−1)^k x^(2k) dx  =−(1/2)∫_0 ^1 (1/(1+x))dx−∫_0 ^1 ((−x^2 )/(1+x^2 ))dx  =−(1/2)ln(2)+∫_0 ^1 dx+∫_0 ^1 (dx/(1+x^2 ))  =1+(π/4)−ln((√2))

$$−{ln}\left({x}\right)={t} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{{t}−{sin}\left({t}\right)}{{t}^{\mathrm{2}} }{e}^{−{t}} \\ $$$${sin}\left({t}\right)−{t}=\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} {t}^{\mathrm{2}{k}+\mathrm{1}} }{\left(\mathrm{2}{k}+\mathrm{1}\right)!} \\ $$$$=\underset{{k}\geqslant\mathrm{1}} {\sum}\int_{\mathrm{0}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{{k}} }{\left(\mathrm{2}{k}+\mathrm{1}\right)!}{t}^{\mathrm{2}{k}−\mathrm{1}} {e}^{−{t}} {dt} \\ $$$$=\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{\left(\mathrm{2}{k}+\mathrm{1}\right)!}\Gamma\left(\mathrm{2}{k}\right) \\ $$$$=\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}\left(\mathrm{2}{k}+\mathrm{1}\right)}=\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}}−\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{{k}\geqslant\mathrm{1}} {\sum}\left(−\mathrm{1}\right)^{{k}} \int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{k}−\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{x}}\underset{{k}\geqslant\mathrm{1}} {\sum}\left(−{x}\right)^{{k}} {dx}−\underset{{k}\geqslant\mathrm{1}} {\sum}\int_{\mathrm{0}} ^{\mathrm{1}} \left(−\mathrm{1}\right)^{{k}} {x}^{\mathrm{2}{k}} {dx} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+{x}}{dx}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{−{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\right)+\int_{\mathrm{0}} ^{\mathrm{1}} {dx}+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$=\mathrm{1}+\frac{\pi}{\mathrm{4}}−{ln}\left(\sqrt{\mathrm{2}}\right) \\ $$

Commented by mnjuly1970 last updated on 24/Dec/20

thanks a lot..

$${thanks}\:{a}\:{lot}.. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com