Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 127017 by mnjuly1970 last updated on 26/Dec/20

               ...NICE     CALCULUS...    prove that ::  ∫_0 ^( ∞)  (((x^2 ln(πx))/π^(πx) ))dx    =(1/((πln(π))^3 ))[(3−2(γ+ln(ln(π)))]

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{NICE}\:\:\:\:\:{CALCULUS}... \\ $$$$\:\:{prove}\:{that}\::: \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:\left(\frac{{x}^{\mathrm{2}} {ln}\left(\pi{x}\right)}{\pi^{\pi{x}} }\right){dx} \\ $$$$\:\:=\frac{\mathrm{1}}{\left(\pi{ln}\left(\pi\right)\right)^{\mathrm{3}} }\left[\left(\mathrm{3}−\mathrm{2}\left(\gamma+{ln}\left({ln}\left(\pi\right)\right)\right)\right]\right. \\ $$

Answered by mindispower last updated on 26/Dec/20

=∫_0 ^∞ x^2 ln(πx)e^(−πxln(π)) dx  u=πln(π)x  ⇒dx=(du/(πln(π)))  ⇔∫_0 ^∞ (u^2 /(π^2 ln^2 (π)))ln((u/(ln(π))))e^(−u) .(du/(πln(π)))  =(1/(π^3 ln^3 (π)))[∫_0 ^∞ u^2 ln(u)e^(−u) du−ln(lnπ)∫_0 ^∞ u^2 e^(−u) ]  =(1/(π^3 ln^3 (π))){Γ′(3)−ln(ln(π).Γ(3)}  =((Γ(3).Ψ(3))/(π^3 ln^3 (π)))−(1/(π^3 ln^3 (π)))2ln(lnπ)  =2((1/2)+1−γ).(1/(π^3 ln^3 (π)))−((2ln(lnπ))/(π^3 ln^3 (π)))  =((3−2γ)/(π^3 ln^3 (π)))−((2ln(lnπ))/(π^3 ln^3 (π)))=(1/((πlnπ)^3 ))[(3−2(γ+ln(lnπ))]

$$=\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{2}} {ln}\left(\pi{x}\right){e}^{−\pi{xln}\left(\pi\right)} {dx} \\ $$$${u}=\pi{ln}\left(\pi\right){x} \\ $$$$\Rightarrow{dx}=\frac{{du}}{\pi{ln}\left(\pi\right)} \\ $$$$\Leftrightarrow\int_{\mathrm{0}} ^{\infty} \frac{{u}^{\mathrm{2}} }{\pi^{\mathrm{2}} {ln}^{\mathrm{2}} \left(\pi\right)}{ln}\left(\frac{{u}}{{ln}\left(\pi\right)}\right){e}^{−{u}} .\frac{{du}}{\pi{ln}\left(\pi\right)} \\ $$$$=\frac{\mathrm{1}}{\pi^{\mathrm{3}} {ln}^{\mathrm{3}} \left(\pi\right)}\left[\int_{\mathrm{0}} ^{\infty} {u}^{\mathrm{2}} {ln}\left({u}\right){e}^{−{u}} {du}−{ln}\left({ln}\pi\right)\int_{\mathrm{0}} ^{\infty} {u}^{\mathrm{2}} {e}^{−{u}} \right] \\ $$$$=\frac{\mathrm{1}}{\pi^{\mathrm{3}} {ln}^{\mathrm{3}} \left(\pi\right)}\left\{\Gamma'\left(\mathrm{3}\right)−{ln}\left({ln}\left(\pi\right).\Gamma\left(\mathrm{3}\right)\right\}\right. \\ $$$$=\frac{\Gamma\left(\mathrm{3}\right).\Psi\left(\mathrm{3}\right)}{\pi^{\mathrm{3}} {ln}^{\mathrm{3}} \left(\pi\right)}−\frac{\mathrm{1}}{\pi^{\mathrm{3}} {ln}^{\mathrm{3}} \left(\pi\right)}\mathrm{2}{ln}\left({ln}\pi\right) \\ $$$$=\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{1}−\gamma\right).\frac{\mathrm{1}}{\pi^{\mathrm{3}} {ln}^{\mathrm{3}} \left(\pi\right)}−\frac{\mathrm{2}{ln}\left({ln}\pi\right)}{\pi^{\mathrm{3}} {ln}^{\mathrm{3}} \left(\pi\right)} \\ $$$$=\frac{\mathrm{3}−\mathrm{2}\gamma}{\pi^{\mathrm{3}} {ln}^{\mathrm{3}} \left(\pi\right)}−\frac{\mathrm{2}{ln}\left({ln}\pi\right)}{\pi^{\mathrm{3}} {ln}^{\mathrm{3}} \left(\pi\right)}=\frac{\mathrm{1}}{\left(\pi{ln}\pi\right)^{\mathrm{3}} }\left[\left(\mathrm{3}−\mathrm{2}\left(\gamma+{ln}\left({ln}\pi\right)\right)\right]\right. \\ $$

Commented by mnjuly1970 last updated on 26/Dec/20

peace be upon you    sir power ..mercey..

$${peace}\:{be}\:{upon}\:{you} \\ $$$$\:\:{sir}\:{power}\:..{mercey}.. \\ $$

Answered by Dwaipayan Shikari last updated on 26/Dec/20

∫_0 ^∞ ((x^2 log(πx))/π^(πx) )dx=(1/π^3 )∫_0 ^∞ ((u^2 log(u))/π^u )du       πx=u  =(1/π^3 )∫_0 ^∞ e^(−ulog(π)) u^2 log(u)du                 ulog(π)=t  =(1/((πlog(π))^3 ))∫_0 ^∞ e^(−t) t^2 log(t)−∫_0 ^∞ e^(−t) t^2 log(log(π))  =(1/((πlog(π))^3 ))(Γ′(3)−Γ(3)log(log(π)))  Γ′(3)=Γ(3)ψ(3)=2(−γ+Σ^∞ (1/n)−(1/(n+2)))=−2γ+3  =(1/((πlog(π))^3 ))(−2γ+3−2log(log(π))

$$\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{2}} {log}\left(\pi{x}\right)}{\pi^{\pi{x}} }{dx}=\frac{\mathrm{1}}{\pi^{\mathrm{3}} }\int_{\mathrm{0}} ^{\infty} \frac{{u}^{\mathrm{2}} {log}\left({u}\right)}{\pi^{{u}} }{du}\:\:\:\:\:\:\:\pi{x}={u} \\ $$$$=\frac{\mathrm{1}}{\pi^{\mathrm{3}} }\int_{\mathrm{0}} ^{\infty} {e}^{−{ulog}\left(\pi\right)} {u}^{\mathrm{2}} {log}\left({u}\right){du}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{ulog}\left(\pi\right)={t} \\ $$$$=\frac{\mathrm{1}}{\left(\pi{log}\left(\pi\right)\right)^{\mathrm{3}} }\int_{\mathrm{0}} ^{\infty} {e}^{−{t}} {t}^{\mathrm{2}} {log}\left({t}\right)−\int_{\mathrm{0}} ^{\infty} {e}^{−{t}} {t}^{\mathrm{2}} {log}\left({log}\left(\pi\right)\right) \\ $$$$=\frac{\mathrm{1}}{\left(\pi{log}\left(\pi\right)\right)^{\mathrm{3}} }\left(\Gamma'\left(\mathrm{3}\right)−\Gamma\left(\mathrm{3}\right){log}\left({log}\left(\pi\right)\right)\right) \\ $$$$\Gamma'\left(\mathrm{3}\right)=\Gamma\left(\mathrm{3}\right)\psi\left(\mathrm{3}\right)=\mathrm{2}\left(−\gamma+\overset{\infty} {\sum}\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{2}}\right)=−\mathrm{2}\gamma+\mathrm{3} \\ $$$$=\frac{\mathrm{1}}{\left(\pi{log}\left(\pi\right)\right)^{\mathrm{3}} }\left(−\mathrm{2}\gamma+\mathrm{3}−\mathrm{2}{log}\left({log}\left(\pi\right)\right)\right. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com