Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 127446 by mnjuly1970 last updated on 29/Dec/20

          ...challanging  integral...        prove  that ::       Ω=∫_0 ^( ∞) (cos(x)−(1/(1+x^2  )))(dx/x) = −γ

$$\:\:\:\:\:\:\:\:\:\:...{challanging}\:\:{integral}... \\ $$$$\:\:\:\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} \left({cos}\left({x}\right)−\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} \:}\right)\frac{{dx}}{{x}}\:=\:−\gamma\:\: \\ $$$$ \\ $$

Answered by mindispower last updated on 31/Dec/20

Ci(x)=−∫_x ^∞ ((cos(t))/t)dt=γ+ln(x)−∫_0 ^x ((1−cos(t))/t)dt   Ω=lim_(t→0) ∫_t ^∞ (cos(x)−(1/(1+x^2 ))).(dx/x)  =lim_(t→0) (−γ−ln(t)+∫_0 ^t ((1−cos(x))/x)dx−∫_t ^∞ (dx/(x(1+x^2 ))))  =lim_(t→0) (−γ−ln(t)+∫_0 ^t ((1−cos(x))/x)dx−B)  B=∫_t ^∞ (1/(x(1+x^2 )))=((1+x^2 −x.x)/(x(1+x^2 )))=∫_t ^∞ (1/x)−(x/(1+x^2 ))dx  =[ln(x)−((ln(1+x^2 ))/2)]_t ^∞ =−ln(t)+((ln(1+t^2 ))/2)  Ω=lim_(t→0) (−γ−ln(t)+∫_0 ^t ((1−cos(x))/x)dx+ln(t)−((ln(1+t^2 ))/2))  Ω=lim_(t→0) (−γ+∫_0 ^t ((1−cos(x))/x)dx)  lim_(t→0) ∫_0 ^t ((1−cos(x))/x)dx=0  ((1−cos(x))/x)=g(x)  0≤((1−cos(x))/x)  _(x∈[0,t]) =Σ_(k≥1) (((−1)^(k+1) )/((2k!)))x^(2k−1) ≤(x/2)  ⇒0≤∫_0 ^t ((1−cos(x))/x)dx≤(t^2 /4)→0  Ω=lim_(t→0) (−γ+∫_0 ^t ((1−cos(x))/x)dx)=−γ+0=−γ  Ω=−γ

$${Ci}\left({x}\right)=−\int_{{x}} ^{\infty} \frac{{cos}\left({t}\right)}{{t}}{dt}=\gamma+{ln}\left({x}\right)−\int_{\mathrm{0}} ^{{x}} \frac{\mathrm{1}−{cos}\left({t}\right)}{{t}}{dt}\: \\ $$$$\Omega=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\int_{{t}} ^{\infty} \left({cos}\left({x}\right)−\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\right).\frac{{dx}}{{x}} \\ $$$$=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(−\gamma−{ln}\left({t}\right)+\int_{\mathrm{0}} ^{{t}} \frac{\mathrm{1}−{cos}\left({x}\right)}{{x}}{dx}−\int_{{t}} ^{\infty} \frac{{dx}}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\right) \\ $$$$=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(−\gamma−{ln}\left({t}\right)+\int_{\mathrm{0}} ^{{t}} \frac{\mathrm{1}−{cos}\left({x}\right)}{{x}}{dx}−{B}\right) \\ $$$${B}=\int_{{t}} ^{\infty} \frac{\mathrm{1}}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}=\frac{\mathrm{1}+{x}^{\mathrm{2}} −{x}.{x}}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}=\int_{{t}} ^{\infty} \frac{\mathrm{1}}{{x}}−\frac{{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$=\left[{ln}\left({x}\right)−\frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{2}}\right]_{{t}} ^{\infty} =−{ln}\left({t}\right)+\frac{{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{\mathrm{2}} \\ $$$$\Omega=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(−\gamma−{ln}\left({t}\right)+\int_{\mathrm{0}} ^{{t}} \frac{\mathrm{1}−{cos}\left({x}\right)}{{x}}{dx}+{ln}\left({t}\right)−\frac{{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{\mathrm{2}}\right) \\ $$$$\Omega=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(−\gamma+\int_{\mathrm{0}} ^{{t}} \frac{\mathrm{1}−{cos}\left({x}\right)}{{x}}{dx}\right) \\ $$$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\int_{\mathrm{0}} ^{{t}} \frac{\mathrm{1}−{cos}\left({x}\right)}{{x}}{dx}=\mathrm{0} \\ $$$$\frac{\mathrm{1}−{cos}\left({x}\right)}{{x}}={g}\left({x}\right) \\ $$$$\mathrm{0}\leqslant\frac{\mathrm{1}−{cos}\left({x}\right)}{{x}}\:\underset{{x}\in\left[\mathrm{0},{t}\right]} {\:}=\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}+\mathrm{1}} }{\left(\mathrm{2}{k}!\right)}{x}^{\mathrm{2}{k}−\mathrm{1}} \leqslant\frac{{x}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{0}\leqslant\int_{\mathrm{0}} ^{{t}} \frac{\mathrm{1}−{cos}\left({x}\right)}{{x}}{dx}\leqslant\frac{{t}^{\mathrm{2}} }{\mathrm{4}}\rightarrow\mathrm{0} \\ $$$$\Omega=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(−\gamma+\int_{\mathrm{0}} ^{{t}} \frac{\mathrm{1}−{cos}\left({x}\right)}{{x}}{dx}\right)=−\gamma+\mathrm{0}=−\gamma \\ $$$$\Omega=−\gamma \\ $$$$ \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 31/Dec/20

very nice .thanks alot..

$${very}\:{nice}\:.{thanks}\:{alot}.. \\ $$$$ \\ $$

Commented by mindispower last updated on 31/Dec/20

pleasur sir happy new years all good things for  you

$${pleasur}\:{sir}\:{happy}\:{new}\:{years}\:{all}\:{good}\:{things}\:{for} \\ $$$${you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com