Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 127452 by snipers237 last updated on 29/Dec/20

 Let  a∈R^∗ ,lim_(n→∞)  (asin((1/n^2 ))+(1/a)cos(n))^n =0

$$\:{Let}\:\:{a}\in\mathbb{R}^{\ast} ,\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left({asin}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)+\frac{\mathrm{1}}{{a}}{cos}\left({n}\right)\right)^{{n}} =\mathrm{0} \\ $$

Answered by Ar Brandon last updated on 29/Dec/20

u_n =(asin(1/n^2 )+(1/a)cosn)^n   ∣sin((1/n^2 ))∣≤1 ∧ ∣cosn∣≤1  ⇒∣asin(1/n^2 )+(1/a)cosn∣≤a∣sin(1/n^2 )∣+(1/a)∣cosn∣≤a+(1/a)   ⇒∣u_n ∣≤(a+(1/a))^n . But lim_(n→∞) (a+(1/a))^n =+∞  Since lim_(n→∞) sin(1/n^2 )=0, ∃N∈N^∗  ∀n∈N^∗ ∧n≥N,  −(1/a)≤asin(1/n^2 )≤(1/a) . Thus ∀n≥N,  −(2/a)≤asin(1/n^2 )+(1/a)cosn≤(2/a)  where ∣asin(1/n^2 )+(1/a)cosn∣≤(2/a). We deduce that ∀n≥N,  ∣u_n ∣≤((2/a))^n  and since lim_(n→∞) ((2/a))^n =0,  ⇒lim_(n→∞) u_n =0

$$\mathrm{u}_{\mathrm{n}} =\left(\mathrm{asin}\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{a}}\mathrm{cosn}\right)^{\mathrm{n}} \\ $$$$\mid\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\right)\mid\leqslant\mathrm{1}\:\wedge\:\mid\mathrm{cosn}\mid\leqslant\mathrm{1} \\ $$$$\Rightarrow\mid\mathrm{asin}\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{a}}\mathrm{cosn}\mid\leqslant\mathrm{a}\mid\mathrm{sin}\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\mid+\frac{\mathrm{1}}{\mathrm{a}}\mid\mathrm{cosn}\mid\leqslant\mathrm{a}+\frac{\mathrm{1}}{\mathrm{a}}\: \\ $$$$\Rightarrow\mid\mathrm{u}_{\mathrm{n}} \mid\leqslant\left(\mathrm{a}+\frac{\mathrm{1}}{\mathrm{a}}\right)^{\mathrm{n}} .\:\mathrm{But}\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{a}+\frac{\mathrm{1}}{\mathrm{a}}\right)^{\mathrm{n}} =+\infty \\ $$$$\mathrm{Since}\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}sin}\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }=\mathrm{0},\:\exists{N}\in\mathbb{N}^{\ast} \:\forall\mathrm{n}\in\mathbb{N}^{\ast} \wedge\mathrm{n}\geqslant{N}, \\ $$$$−\frac{\mathrm{1}}{\mathrm{a}}\leqslant\mathrm{asin}\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\leqslant\frac{\mathrm{1}}{\mathrm{a}}\:.\:\mathrm{Thus}\:\forall\mathrm{n}\geqslant{N}, \\ $$$$−\frac{\mathrm{2}}{\mathrm{a}}\leqslant\mathrm{asin}\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{a}}\mathrm{cosn}\leqslant\frac{\mathrm{2}}{\mathrm{a}} \\ $$$$\mathrm{where}\:\mid\mathrm{asin}\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{a}}\mathrm{cosn}\mid\leqslant\frac{\mathrm{2}}{\mathrm{a}}.\:\mathrm{We}\:\mathrm{deduce}\:\mathrm{that}\:\forall\mathrm{n}\geqslant{N}, \\ $$$$\mid\mathrm{u}_{\mathrm{n}} \mid\leqslant\left(\frac{\mathrm{2}}{\mathrm{a}}\right)^{\mathrm{n}} \:\mathrm{and}\:\mathrm{since}\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{2}}{\mathrm{a}}\right)^{\mathrm{n}} =\mathrm{0}, \\ $$$$\Rightarrow\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}u}_{\mathrm{n}} =\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com