Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 128680 by mnjuly1970 last updated on 09/Jan/21

                     ...nice  calculus...       Σ_(n=0) ^∞ (1/((3n+1)ϕ^(3n+1) )) =?  ϕ ::  golden  ratio...

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:{calculus}... \\ $$$$\:\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}+\mathrm{1}\right)\varphi^{\mathrm{3}{n}+\mathrm{1}} }\:=? \\ $$$$\varphi\:::\:\:{golden}\:\:{ratio}... \\ $$$$ \\ $$

Answered by mr W last updated on 09/Jan/21

Σ_(n=0) ^∞ x^(3n) =(1/(1−x^3 )) for ∣x∣<1  Σ_(n=0) ^∞ ∫_0 ^x x^(3n) dx=∫_0 ^x (1/(1−x^3 ))dx  Σ_(n=0) ^∞ (x^(3n+1) /(3n+1))=−(1/3)∫_0 ^x ((1/(x−1))−((x+2)/(x^2 +x+1)))dx  Σ_(n=0) ^∞ (x^(3n+1) /(3n+1))=[(1/6)ln ((x^2 +x+1)/((x−1)^2 ))+(1/( (√3)))tan^(−1) ((2x+1)/( (√3)))]_0 ^x   Σ_(n=0) ^∞ (x^(3n+1) /(3n+1))=[(1/6)ln ((x^2 +x+1)/((x−1)^2 ))+(1/( (√3)))tan^(−1) ((2x+1)/( (√3)))−(π/(6(√3)))]  x=(1/ϕ)=ϕ−1  x^2 =(1/ϕ^2 )=1−(1/ϕ)=2−ϕ  ⇒Σ_(n=0) ^∞ (1/((3n+1)ϕ^(3n+1) ))=((ln 2)/6)+(2/3)ln ϕ+(1/( (√3)))tan^(−1) ((2ϕ−1)/( (√3)))−(π/(6(√3)))≈0.66042487

$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{\mathrm{3}{n}} =\frac{\mathrm{1}}{\mathrm{1}−{x}^{\mathrm{3}} }\:{for}\:\mid{x}\mid<\mathrm{1} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{{x}} {x}^{\mathrm{3}{n}} {dx}=\int_{\mathrm{0}} ^{{x}} \frac{\mathrm{1}}{\mathrm{1}−{x}^{\mathrm{3}} }{dx} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{\mathrm{3}{n}+\mathrm{1}} }{\mathrm{3}{n}+\mathrm{1}}=−\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{{x}} \left(\frac{\mathrm{1}}{{x}−\mathrm{1}}−\frac{{x}+\mathrm{2}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}\right){dx} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{\mathrm{3}{n}+\mathrm{1}} }{\mathrm{3}{n}+\mathrm{1}}=\left[\frac{\mathrm{1}}{\mathrm{6}}\mathrm{ln}\:\frac{{x}^{\mathrm{2}} +{x}+\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{2}{x}+\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right]_{\mathrm{0}} ^{{x}} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{\mathrm{3}{n}+\mathrm{1}} }{\mathrm{3}{n}+\mathrm{1}}=\left[\frac{\mathrm{1}}{\mathrm{6}}\mathrm{ln}\:\frac{{x}^{\mathrm{2}} +{x}+\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{2}{x}+\mathrm{1}}{\:\sqrt{\mathrm{3}}}−\frac{\pi}{\mathrm{6}\sqrt{\mathrm{3}}}\right] \\ $$$${x}=\frac{\mathrm{1}}{\varphi}=\varphi−\mathrm{1} \\ $$$${x}^{\mathrm{2}} =\frac{\mathrm{1}}{\varphi^{\mathrm{2}} }=\mathrm{1}−\frac{\mathrm{1}}{\varphi}=\mathrm{2}−\varphi \\ $$$$\Rightarrow\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}+\mathrm{1}\right)\varphi^{\mathrm{3}{n}+\mathrm{1}} }=\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{6}}+\frac{\mathrm{2}}{\mathrm{3}}\mathrm{ln}\:\varphi+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{2}\varphi−\mathrm{1}}{\:\sqrt{\mathrm{3}}}−\frac{\pi}{\mathrm{6}\sqrt{\mathrm{3}}}\approx\mathrm{0}.\mathrm{66042487} \\ $$

Commented by mnjuly1970 last updated on 09/Jan/21

thank you so much mrW  grateful...

$${thank}\:{you}\:{so}\:{much}\:{mrW} \\ $$$${grateful}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com