Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 128922 by mnjuly1970 last updated on 11/Jan/21

             ...advanced  calculus...       evaluate :::          Ω=∫_(0 ) ^( (1/2)) ((Arctanh(x))/x)dx=?

$$\:\:\:\:\:\:\:\:\:\:\:\:\:...{advanced}\:\:{calculus}... \\ $$$$\:\:\:\:\:{evaluate}\::::\: \\ $$$$\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}\:} ^{\:\frac{\mathrm{1}}{\mathrm{2}}} \frac{\mathrm{Arctanh}\left({x}\right)}{{x}}{dx}=? \\ $$$$ \\ $$

Answered by Dwaipayan Shikari last updated on 11/Jan/21

tanh^(−1) (x)=y  ⇒x=((e^y −e^(−y) )/(e^y +e^(−y) ))⇒xe^(2y) +x=e^(2y) −1⇒e^(2y) =((1+x)/(1−x))  y=(1/2)log(((1+x)/(1−x)))  (1/2)∫_0 ^(1/2) ((log(1+x))/x)−((log(1−x))/x)dx  =(1/2)Σ_(n=1) ^∞ (−1)^(n+1) (1/n)∫_0 ^(1/2) x^(n−1) dx +(1/2)Σ_(n=1) ^∞ (1/n)∫_0 ^(1/2) x^(n−1) dx  =(1/2)Σ_(n=1) ^∞ (((−1)^(n+1) )/n^2 )((1/2))^n +(1/2)Σ_(n=1) ^∞ (1/n^2 )((1/2))^n   =Σ_(n=0) ^∞ (1/((2n+1)^2 ))((1/2))^(2n+1) =(1/8)Σ_(n=0) ^∞ (1/((n+(1/2))^2 ))((1/4))^n   =(1/8)Σ_(n=0) ^∞ (((1)_n )/((n+(1/2))^2 n!))((1/4))^n

$${tanh}^{−\mathrm{1}} \left({x}\right)={y} \\ $$$$\Rightarrow{x}=\frac{{e}^{{y}} −{e}^{−{y}} }{{e}^{{y}} +{e}^{−{y}} }\Rightarrow{xe}^{\mathrm{2}{y}} +{x}={e}^{\mathrm{2}{y}} −\mathrm{1}\Rightarrow{e}^{\mathrm{2}{y}} =\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}} \\ $$$${y}=\frac{\mathrm{1}}{\mathrm{2}}{log}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{{log}\left(\mathrm{1}+{x}\right)}{{x}}−\frac{{log}\left(\mathrm{1}−{x}\right)}{{x}}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} {x}^{{n}−\mathrm{1}} {dx}\:+\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} {x}^{{n}−\mathrm{1}} {dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{{n}^{\mathrm{2}} }\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} +\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{8}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }\left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{{n}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{1}\right)_{{n}} }{\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} {n}!}\left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{{n}} \:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Commented by Dwaipayan Shikari last updated on 11/Jan/21

I think it can be fransformed into Hypergeometric functions  Trying to find that..

$${I}\:{think}\:{it}\:{can}\:{be}\:{fransformed}\:{into}\:{Hypergeometric}\:{functions} \\ $$$${Trying}\:{to}\:{find}\:{that}.. \\ $$

Commented by mnjuly1970 last updated on 11/Jan/21

thank you so much..    li_2 (x) =−∫_0 ^( x) ((ln(1−t))/t)dt     li_2 (x)+li_2 (1−x)=(π^2 /6) −ln(x)ln(1−x)    of course you know    these better than that me.    i just mentioned it...(dilogarithm function properties)..

$${thank}\:{you}\:{so}\:{much}.. \\ $$$$\:\:{li}_{\mathrm{2}} \left({x}\right)\:=−\int_{\mathrm{0}} ^{\:{x}} \frac{{ln}\left(\mathrm{1}−{t}\right)}{{t}}{dt} \\ $$$$\:\:\:{li}_{\mathrm{2}} \left({x}\right)+{li}_{\mathrm{2}} \left(\mathrm{1}−{x}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:−{ln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right) \\ $$$$\:\:{of}\:{course}\:{you}\:{know} \\ $$$$\:\:{these}\:{better}\:{than}\:{that}\:{me}. \\ $$$$\:\:{i}\:{just}\:{mentioned}\:{it}...\left({dilogarithm}\:{function}\:{properties}\right).. \\ $$$$ \\ $$

Commented by Dwaipayan Shikari last updated on 11/Jan/21

Or   −(1/2)Σ_(n=1) ^∞ (1/n^2 )(−(1/2))^n +(1/2)Σ_(n=1) ^∞ (1/n^2 )((1/2))^n   =−(1/2)Li_2 (−(1/2))+(1/2)Li_2 ((1/2))

$${Or}\: \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} +\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}{Li}_{\mathrm{2}} \left(−\frac{\mathrm{1}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}{Li}_{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$

Commented by mnjuly1970 last updated on 11/Jan/21

very nice   thank you mr dwaipayan

$${very}\:{nice}\: \\ $$$${thank}\:{you}\:{mr}\:{dwaipayan} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com