Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 128931 by Dwaipayan Shikari last updated on 11/Jan/21

Approximate  Σ_(n=1) ^∞ ((√n)/(n^2 +1))

$${Approximate} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\sqrt{{n}}}{{n}^{\mathrm{2}} +\mathrm{1}} \\ $$

Commented by Dwaipayan Shikari last updated on 11/Jan/21

I have tried this approximation  Σ_(n=1) ^∞ f(n)=∫_0 ^∞ f(x)dx+lim_(z→∞) ((f(z)+f(1))/2)+Σ_(k=1) ^∞ (β_(2k) /((2k)!))(f^((2k−1)) (z)−f^(2k−1) (0))  Euler Maclaurin sum  f(z)=((√z)/(z^2 +1))  Σ_(n≥0) f(z)=∫_0 ^∞ ((√z)/(z^2 +1))dz +(1/4)+lim_(ϑ→∞) Σ_(k=1) ^∞ (β_(2k) /((2k)!))(f^(2k−1) (ϑ)−f^(2k−1) (0))                =  (π/(2(√2)))+(1/4)±{(Λ^Φ ) }→Harder to approximate  Λ^Φ =Σ_(k=1) ^∞ (β_(2k) /((2k)!))((((∂^(2k−1) (((√z)/(z^2 +1))) )/∂z^(2k−1) )))_0 ^∞

$${I}\:{have}\:{tried}\:{this}\:{approximation} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{f}\left({n}\right)=\int_{\mathrm{0}} ^{\infty} {f}\left({x}\right){dx}+\underset{{z}\rightarrow\infty} {\mathrm{lim}}\frac{{f}\left({z}\right)+{f}\left(\mathrm{1}\right)}{\mathrm{2}}+\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\beta_{\mathrm{2}{k}} }{\left(\mathrm{2}{k}\right)!}\left({f}^{\left(\mathrm{2}{k}−\mathrm{1}\right)} \left({z}\right)−{f}^{\mathrm{2}{k}−\mathrm{1}} \left(\mathrm{0}\right)\right) \\ $$$$\boldsymbol{\mathcal{E}{uler}}\:\boldsymbol{\mathfrak{M}{aclaurin}}\:\boldsymbol{{sum}} \\ $$$$\boldsymbol{{f}}\left(\boldsymbol{{z}}\right)=\frac{\sqrt{\boldsymbol{{z}}}}{\boldsymbol{{z}}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\underset{{n}\geqslant\mathrm{0}} {\sum}\boldsymbol{{f}}\left(\boldsymbol{{z}}\right)=\int_{\mathrm{0}} ^{\infty} \frac{\sqrt{\boldsymbol{{z}}}}{\boldsymbol{{z}}^{\mathrm{2}} +\mathrm{1}}\boldsymbol{{dz}}\:+\frac{\mathrm{1}}{\mathrm{4}}+\underset{\vartheta\rightarrow\infty} {\mathrm{lim}}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\beta_{\mathrm{2}{k}} }{\left(\mathrm{2}{k}\right)!}\left({f}^{\mathrm{2}{k}−\mathrm{1}} \left(\vartheta\right)−{f}^{\mathrm{2}{k}−\mathrm{1}} \left(\mathrm{0}\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\:\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}}+\frac{\mathrm{1}}{\mathrm{4}}\pm\left\{\left(\overset{\Phi} {\Lambda}\right)\:\right\}\rightarrow{Harder}\:{to}\:{approximate} \\ $$$$\overset{\Phi} {\Lambda}=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\beta_{\mathrm{2}{k}} }{\left(\mathrm{2}{k}\right)!}\left(\left(\frac{\partial^{\mathrm{2}{k}−\mathrm{1}} \left(\frac{\sqrt{{z}}}{{z}^{\mathrm{2}} +\mathrm{1}}\right)\:}{\partial{z}^{\mathrm{2}{k}−\mathrm{1}} }\right)\right)_{\mathrm{0}} ^{\infty} \\ $$

Commented by Dwaipayan Shikari last updated on 11/Jan/21

Any better way  sirs?

$${Any}\:{better}\:{way}\:\:{sirs}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com