Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 129545 by mnjuly1970 last updated on 16/Jan/21

Answered by mindispower last updated on 16/Jan/21

=∫_0 ^∞ ((sin^2 (x))/x^2 )−∫_0 ^∞ ((sin^2 (x))/(1+x^2 ))dx  ∫_0 ^∞ ((sin^2 (x))/(1+x^2 ))dx=∫_0 ^∞ ((1−cos(2x))/(2(1+x^2 )))dx=(π/4)−(1/2)Re∫_0 ^∞ (e^(2ix) /(1+x^2 ))  =(π/4)−((Re)/2).2iπ.(e^(−2) /(2i))=(π/4)−(π/(2e^2 ))  ∫_0 ^∞ ((sin^2 (x))/x^2 )=[−((sin^2 (x))/x)]_0 ^∞ +∫_0 ^∞ ((sin(2x))/x)dx  =(π/2)  we get (π/4)(1+(2/e^2 ))

$$=\int_{\mathrm{0}} ^{\infty} \frac{{sin}^{\mathrm{2}} \left({x}\right)}{{x}^{\mathrm{2}} }−\int_{\mathrm{0}} ^{\infty} \frac{{sin}^{\mathrm{2}} \left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{sin}^{\mathrm{2}} \left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}=\frac{\pi}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}}{Re}\int_{\mathrm{0}} ^{\infty} \frac{{e}^{\mathrm{2}{ix}} }{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$=\frac{\pi}{\mathrm{4}}−\frac{{Re}}{\mathrm{2}}.\mathrm{2}{i}\pi.\frac{{e}^{−\mathrm{2}} }{\mathrm{2}{i}}=\frac{\pi}{\mathrm{4}}−\frac{\pi}{\mathrm{2}{e}^{\mathrm{2}} } \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{sin}^{\mathrm{2}} \left({x}\right)}{{x}^{\mathrm{2}} }=\left[−\frac{{sin}^{\mathrm{2}} \left({x}\right)}{{x}}\right]_{\mathrm{0}} ^{\infty} +\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left(\mathrm{2}{x}\right)}{{x}}{dx} \\ $$$$=\frac{\pi}{\mathrm{2}} \\ $$$${we}\:{get}\:\frac{\pi}{\mathrm{4}}\left(\mathrm{1}+\frac{\mathrm{2}}{{e}^{\mathrm{2}} }\right) \\ $$

Commented by mnjuly1970 last updated on 16/Jan/21

god keep you ..mr power..

$${god}\:{keep}\:{you}\:..{mr}\:{power}.. \\ $$

Answered by mathmax by abdo last updated on 16/Jan/21

Φ=∫_0 ^∞   ((sin^2 x)/(x^2 +x^4 ))dx ⇒Φ=∫_0 ^∞  ((sin^2 x)/(x^2 (1+x^2 )))dx =∫_0 ^∞ ((1/x^2 )−(1/(x^2 +1)))sin^2 xdx  =∫_0 ^∞  ((sin^2 x)/x^2 )dx−∫_0 ^∞  ((sin^2 x)/(x^2  +1))dx  by parts  ∫_0 ^∞  ((sin^2 x)/x^2 )dx =[−((sin^2 x)/x)]_0 ^∞ +∫_0 ^∞   (1/x)2sinx cosxdx  =∫_0 ^∞  ((sin(2x))/x)dx =∫_0 ^∞  ((sin(2x))/(2x))d(2x)=(π/2)  ∫_0 ^∞  ((sin^2 x)/(x^2  +1))dx =∫_0 ^∞  ((1−cos(2x))/(2(x^2  +1)))dx=(1/2)∫_0 ^∞  (dx/(x^2  +1))−(1/2)∫_0 ^∞ ((cos(2x))/(x^2  +1))dx  =(π/4)−(1/4)∫_(−∞) ^(+∞)  ((cos(2x))/(x^2  +1))dx  and∫_(−∞) ^(+∞)  ((cos(2x))/(x^(2 ) +1))dx=Re(∫_(−∞) ^(+∞)  (e^(2ix) /(x^2  +1))dx)  =Re(2iπ (e^(−2) /(2i)))  =(π/e^2 ) ⇒Φ =(π/2)−((π/4)−(π/(4e^2 )))  =(π/4)+(π/(4e^2 )) ⇒Φ=(π/4)(1+(1/e^2 )).

$$\Phi=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{sin}^{\mathrm{2}} \mathrm{x}}{\mathrm{x}^{\mathrm{2}} +\mathrm{x}^{\mathrm{4}} }\mathrm{dx}\:\Rightarrow\Phi=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sin}^{\mathrm{2}} \mathrm{x}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)}\mathrm{dx}\:=\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\right)\mathrm{sin}^{\mathrm{2}} \mathrm{xdx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sin}^{\mathrm{2}} \mathrm{x}}{\mathrm{x}^{\mathrm{2}} }\mathrm{dx}−\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sin}^{\mathrm{2}} \mathrm{x}}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dx}\:\:\mathrm{by}\:\mathrm{parts} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sin}^{\mathrm{2}} \mathrm{x}}{\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:=\left[−\frac{\mathrm{sin}^{\mathrm{2}} \mathrm{x}}{\mathrm{x}}\right]_{\mathrm{0}} ^{\infty} +\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\mathrm{x}}\mathrm{2sinx}\:\mathrm{cosxdx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sin}\left(\mathrm{2x}\right)}{\mathrm{x}}\mathrm{dx}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sin}\left(\mathrm{2x}\right)}{\mathrm{2x}}\mathrm{d}\left(\mathrm{2x}\right)=\frac{\pi}{\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sin}^{\mathrm{2}} \mathrm{x}}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dx}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}−\mathrm{cos}\left(\mathrm{2x}\right)}{\mathrm{2}\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)}\mathrm{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{cos}\left(\mathrm{2x}\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dx} \\ $$$$=\frac{\pi}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{4}}\int_{−\infty} ^{+\infty} \:\frac{\mathrm{cos}\left(\mathrm{2x}\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dx}\:\:\mathrm{and}\int_{−\infty} ^{+\infty} \:\frac{\mathrm{cos}\left(\mathrm{2x}\right)}{\mathrm{x}^{\mathrm{2}\:} +\mathrm{1}}\mathrm{dx}=\mathrm{Re}\left(\int_{−\infty} ^{+\infty} \:\frac{\mathrm{e}^{\mathrm{2ix}} }{\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dx}\right) \\ $$$$=\mathrm{Re}\left(\mathrm{2i}\pi\:\frac{\mathrm{e}^{−\mathrm{2}} }{\mathrm{2i}}\right)\:\:=\frac{\pi}{\mathrm{e}^{\mathrm{2}} }\:\Rightarrow\Phi\:=\frac{\pi}{\mathrm{2}}−\left(\frac{\pi}{\mathrm{4}}−\frac{\pi}{\mathrm{4e}^{\mathrm{2}} }\right) \\ $$$$=\frac{\pi}{\mathrm{4}}+\frac{\pi}{\mathrm{4e}^{\mathrm{2}} }\:\Rightarrow\Phi=\frac{\pi}{\mathrm{4}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{e}^{\mathrm{2}} }\right). \\ $$

Commented by mnjuly1970 last updated on 16/Jan/21

thanks alot mr max...

$${thanks}\:{alot}\:{mr}\:{max}... \\ $$

Commented by mathmax by abdo last updated on 16/Jan/21

you are welcome

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com