Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 131121 by abdurehime last updated on 01/Feb/21

Answered by mathmax by abdo last updated on 01/Feb/21

A)  x^2 +y^2  =25 ⇒y^2  =25−x^2  ⇒y=ξ(√(25−x^2 ))( ξ=+^− 1) ⇒  (dy/dx)=((−2xξ)/(2(√(25−x^2 )))) =−((ξx)/( (√(25−x^2 ))))  also due to symetrie we get  (dx/dy) =−((ξy)/( (√(25−y^2 ))))  c)x+xy^2 −y=xy ⇒xy^2 −y−xy+x=0 ⇒xy^2 −(x+1)y +x=0  Δ=(x+1)^2 −4x^2  =x^2  +2x+1−4x^2  =(x−1)^2  ⇒  y_1 =((x+1+∣x−1∣)/(2x))  and y_2 =((x+1−∣x−1∣)/(2x))  x≥1 ⇒y_1 =1 and y_2 =(1/x) ⇒(dy/dx)=0 or (dy/dx)=−(1/x^2 )  x≤1 ⇒y_1 =1 and y_2 =(1/x) ⇒same result  we have x+xy^2 −xy=y ⇒(1+y^2 −y)x=y ⇒x=(y/(y^2 −y+1)) ⇒  (dx/dy)=((y^2 −y+1−y(2y−1))/((y^2 −y+1)^2 ))=((y^2 −y+1−2y^2  +y)/((y^2 −y+1)^2 ))=((1−y^2 )/((y^2 −y+1)^2 ))

$$\left.\mathrm{A}\right)\:\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \:=\mathrm{25}\:\Rightarrow\mathrm{y}^{\mathrm{2}} \:=\mathrm{25}−\mathrm{x}^{\mathrm{2}} \:\Rightarrow\mathrm{y}=\xi\sqrt{\mathrm{25}−\mathrm{x}^{\mathrm{2}} }\left(\:\xi=\overset{−} {+}\mathrm{1}\right)\:\Rightarrow \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{−\mathrm{2x}\xi}{\mathrm{2}\sqrt{\mathrm{25}−\mathrm{x}^{\mathrm{2}} }}\:=−\frac{\xi\mathrm{x}}{\:\sqrt{\mathrm{25}−\mathrm{x}^{\mathrm{2}} }}\:\:\mathrm{also}\:\mathrm{due}\:\mathrm{to}\:\mathrm{symetrie}\:\mathrm{we}\:\mathrm{get} \\ $$$$\frac{\mathrm{dx}}{\mathrm{dy}}\:=−\frac{\xi\mathrm{y}}{\:\sqrt{\mathrm{25}−\mathrm{y}^{\mathrm{2}} }} \\ $$$$\left.\mathrm{c}\right)\mathrm{x}+\mathrm{xy}^{\mathrm{2}} −\mathrm{y}=\mathrm{xy}\:\Rightarrow\mathrm{xy}^{\mathrm{2}} −\mathrm{y}−\mathrm{xy}+\mathrm{x}=\mathrm{0}\:\Rightarrow\mathrm{xy}^{\mathrm{2}} −\left(\mathrm{x}+\mathrm{1}\right)\mathrm{y}\:+\mathrm{x}=\mathrm{0} \\ $$$$\Delta=\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4x}^{\mathrm{2}} \:=\mathrm{x}^{\mathrm{2}} \:+\mathrm{2x}+\mathrm{1}−\mathrm{4x}^{\mathrm{2}} \:=\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} \:\Rightarrow \\ $$$$\mathrm{y}_{\mathrm{1}} =\frac{\mathrm{x}+\mathrm{1}+\mid\mathrm{x}−\mathrm{1}\mid}{\mathrm{2x}}\:\:\mathrm{and}\:\mathrm{y}_{\mathrm{2}} =\frac{\mathrm{x}+\mathrm{1}−\mid\mathrm{x}−\mathrm{1}\mid}{\mathrm{2x}} \\ $$$$\mathrm{x}\geqslant\mathrm{1}\:\Rightarrow\mathrm{y}_{\mathrm{1}} =\mathrm{1}\:\mathrm{and}\:\mathrm{y}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{x}}\:\Rightarrow\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{0}\:\mathrm{or}\:\frac{\mathrm{dy}}{\mathrm{dx}}=−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} } \\ $$$$\mathrm{x}\leqslant\mathrm{1}\:\Rightarrow\mathrm{y}_{\mathrm{1}} =\mathrm{1}\:\mathrm{and}\:\mathrm{y}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{x}}\:\Rightarrow\mathrm{same}\:\mathrm{result} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{x}+\mathrm{xy}^{\mathrm{2}} −\mathrm{xy}=\mathrm{y}\:\Rightarrow\left(\mathrm{1}+\mathrm{y}^{\mathrm{2}} −\mathrm{y}\right)\mathrm{x}=\mathrm{y}\:\Rightarrow\mathrm{x}=\frac{\mathrm{y}}{\mathrm{y}^{\mathrm{2}} −\mathrm{y}+\mathrm{1}}\:\Rightarrow \\ $$$$\frac{\mathrm{dx}}{\mathrm{dy}}=\frac{\mathrm{y}^{\mathrm{2}} −\mathrm{y}+\mathrm{1}−\mathrm{y}\left(\mathrm{2y}−\mathrm{1}\right)}{\left(\mathrm{y}^{\mathrm{2}} −\mathrm{y}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{\mathrm{y}^{\mathrm{2}} −\mathrm{y}+\mathrm{1}−\mathrm{2y}^{\mathrm{2}} \:+\mathrm{y}}{\left(\mathrm{y}^{\mathrm{2}} −\mathrm{y}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{\mathrm{1}−\mathrm{y}^{\mathrm{2}} }{\left(\mathrm{y}^{\mathrm{2}} −\mathrm{y}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Commented by abdurehime last updated on 02/Feb/21

thank u

$$\mathrm{thank}\:\mathrm{u} \\ $$

Answered by liberty last updated on 02/Feb/21

(b) differentiating w.r.t x  ⇒ 3y+3xy′ −(2xy+x^2 y′)=0  ⇒3y+3xy′−2xy−x^2 y′=0  ⇒(3x−x^2 )y′= 2xy−3y   ⇒ (dy/dx) = ((2xy−3y)/(3x−x^2 )) ; (dx/dy) = (1/(dy/dx))= ((3x−x^2 )/(2xy−3y))

$$\left(\mathrm{b}\right)\:\mathrm{differentiating}\:\mathrm{w}.\mathrm{r}.\mathrm{t}\:\mathrm{x} \\ $$$$\Rightarrow\:\mathrm{3y}+\mathrm{3xy}'\:−\left(\mathrm{2xy}+\mathrm{x}^{\mathrm{2}} \mathrm{y}'\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{3y}+\mathrm{3xy}'−\mathrm{2xy}−\mathrm{x}^{\mathrm{2}} \mathrm{y}'=\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{3x}−\mathrm{x}^{\mathrm{2}} \right)\mathrm{y}'=\:\mathrm{2xy}−\mathrm{3y}\: \\ $$$$\Rightarrow\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{2xy}−\mathrm{3y}}{\mathrm{3x}−\mathrm{x}^{\mathrm{2}} }\:;\:\frac{\mathrm{dx}}{\mathrm{dy}}\:=\:\frac{\mathrm{1}}{\mathrm{dy}/\mathrm{dx}}=\:\frac{\mathrm{3x}−\mathrm{x}^{\mathrm{2}} }{\mathrm{2xy}−\mathrm{3y}} \\ $$

Answered by liberty last updated on 02/Feb/21

(a) (d/dx)[x^2 +y^2  ] = 0  ⇒ 2x+2y(dy/dx) = 0 ; (dy/dx)=−(x/y) ∧ (dx/dy)=−(y/x)  where y = ±(√(25−x^2 ))

$$\left(\mathrm{a}\right)\:\frac{\mathrm{d}}{\mathrm{dx}}\left[\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \:\right]\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{2x}+\mathrm{2y}\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{0}\:;\:\frac{\mathrm{dy}}{\mathrm{dx}}=−\frac{\mathrm{x}}{\mathrm{y}}\:\wedge\:\frac{\mathrm{dx}}{\mathrm{dy}}=−\frac{\mathrm{y}}{\mathrm{x}} \\ $$$$\mathrm{where}\:\mathrm{y}\:=\:\pm\sqrt{\mathrm{25}−\mathrm{x}^{\mathrm{2}} } \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com