Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 131590 by pticantor last updated on 06/Feb/21

show that  U_n =∫_0 ^1 (dx/(1+x+x^2 +....+x^n ))   converges!!

$$\boldsymbol{{show}}\:\boldsymbol{{that}} \\ $$$$\boldsymbol{{U}}_{\boldsymbol{{n}}} =\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{{dx}}}{\mathrm{1}+\boldsymbol{{x}}+\boldsymbol{{x}}^{\mathrm{2}} +....+\boldsymbol{{x}}^{\boldsymbol{{n}}} }\: \\ $$$$\boldsymbol{{converges}}!! \\ $$

Answered by mathmax by abdo last updated on 06/Feb/21

U_n =∫_0 ^1   (((1−x))/(1−x^(n+1) ))dx ⇒lim_(n→+∞) U_n =∫_0 ^1 lim_(n→+∞) ((1−x)/(1−x^(n+1) ))dx   =∫_0 ^1 (1−x)dx =[x−(x^2 /2)]_0 ^1 =1−(1/2)=(1/2) so U_n cv and U_n →(1/2)

$$\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{1}−\mathrm{x}^{\mathrm{n}+\mathrm{1}} }\mathrm{dx}\:\Rightarrow\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \frac{\mathrm{1}−\mathrm{x}}{\mathrm{1}−\mathrm{x}^{\mathrm{n}+\mathrm{1}} }\mathrm{dx}\: \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−\mathrm{x}\right)\mathrm{dx}\:=\left[\mathrm{x}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\right]_{\mathrm{0}} ^{\mathrm{1}} =\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{so}\:\mathrm{U}_{\mathrm{n}} \mathrm{cv}\:\mathrm{and}\:\mathrm{U}_{\mathrm{n}} \rightarrow\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented by pticantor last updated on 08/Feb/21

i think that should be true if  ∣x∣<1  i have a question! please in wich cases  we have  lim_(n>∞) ∫_a ^b f_n (x)dx=∫_a ^b lim_(n>∞) f_n (x)dx ?

$$\boldsymbol{{i}}\:\boldsymbol{{think}}\:\boldsymbol{{that}}\:\boldsymbol{{should}}\:\boldsymbol{{be}}\:\boldsymbol{{true}}\:\boldsymbol{{if}} \\ $$$$\mid\boldsymbol{{x}}\mid<\mathrm{1} \\ $$$$\boldsymbol{{i}}\:\boldsymbol{{have}}\:\boldsymbol{{a}}\:\boldsymbol{{question}}!\:\boldsymbol{{please}}\:\boldsymbol{{in}}\:\boldsymbol{{wich}}\:\boldsymbol{{cases}} \\ $$$$\boldsymbol{{we}}\:\boldsymbol{{have}} \\ $$$$\boldsymbol{{li}}\underset{\boldsymbol{{n}}>\infty} {\boldsymbol{{m}}}\int_{\boldsymbol{{a}}} ^{\boldsymbol{{b}}} \boldsymbol{{f}}_{\boldsymbol{{n}}} \left(\boldsymbol{{x}}\right)\boldsymbol{{dx}}=\int_{\boldsymbol{{a}}} ^{\boldsymbol{{b}}} \boldsymbol{{li}}\underset{\boldsymbol{{n}}>\infty} {\boldsymbol{{m}f}}_{\boldsymbol{{n}}} \left(\boldsymbol{{x}}\right)\boldsymbol{{dx}}\:? \\ $$

Answered by Dwaipayan Shikari last updated on 06/Feb/21

∫_0 ^1 ((1−x)/(1−x^(n+1) ))dx        x^(n+1) =u  ⇒(1/(n+1))∫_0 ^1 ((x^(−n) −x^(1−n) )/(1−u))du=(1/(n+1))∫_0 ^1 ((u^(−(n/(n+1))) −u^((1−n)/(n+1)) )/(1−u))du  =(1/(n+1))(ψ(1+((1−n)/(n+1)))−ψ(1−(n/(n+1))))  =(1/(n+1))(ψ((2/(n+1)))−ψ((1/(n+1))))

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{x}}{\mathrm{1}−{x}^{{n}+\mathrm{1}} }{dx}\:\:\:\:\:\:\:\:{x}^{{n}+\mathrm{1}} ={u} \\ $$$$\Rightarrow\frac{\mathrm{1}}{{n}+\mathrm{1}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{−{n}} −{x}^{\mathrm{1}−{n}} }{\mathrm{1}−{u}}{du}=\frac{\mathrm{1}}{{n}+\mathrm{1}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{u}^{−\frac{{n}}{{n}+\mathrm{1}}} −{u}^{\frac{\mathrm{1}−{n}}{{n}+\mathrm{1}}} }{\mathrm{1}−{u}}{du} \\ $$$$=\frac{\mathrm{1}}{{n}+\mathrm{1}}\left(\psi\left(\mathrm{1}+\frac{\mathrm{1}−{n}}{{n}+\mathrm{1}}\right)−\psi\left(\mathrm{1}−\frac{{n}}{{n}+\mathrm{1}}\right)\right) \\ $$$$=\frac{\mathrm{1}}{{n}+\mathrm{1}}\left(\psi\left(\frac{\mathrm{2}}{{n}+\mathrm{1}}\right)−\psi\left(\frac{\mathrm{1}}{{n}+\mathrm{1}}\right)\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com