Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 131642 by liberty last updated on 07/Feb/21

What is the maximum area   of ellipse (x^2 /a^2 )+(y^2 /b^2 )=1 which touches  the line y = 3x+2.

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{area}\: \\ $$$$\mathrm{of}\:\mathrm{ellipse}\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{a}^{\mathrm{2}} }+\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{b}^{\mathrm{2}} }=\mathrm{1}\:\mathrm{which}\:\mathrm{touches} \\ $$$$\mathrm{the}\:\mathrm{line}\:\mathrm{y}\:=\:\mathrm{3x}+\mathrm{2}. \\ $$

Answered by benjo_mathlover last updated on 07/Feb/21

Area ellipse = πab  touches the line y=3x+2  by tangency ⇒y=mx+(√(a^2 m^2 +b^2 ))  where  { ((m=3)),(((√(9a^2 +b^2 )) = 2)) :}  or b=(√(4−9a^2 ))  then A=f(a)=πa(√(4−9a^2 ))  A^2  = π^2 a^2 (4−9a^2 )  9π^2 (a^2 )^2 −4π^2 a^2 +A^2 =0  Δ = 16π^4 −4(9π^2 )A^2 =0  ⇔ 4π^2 =9A^2  ⇒A=((2π)/3) ←max area

$$\mathrm{Area}\:\mathrm{ellipse}\:=\:\pi\mathrm{ab} \\ $$$$\mathrm{touches}\:\mathrm{the}\:\mathrm{line}\:\mathrm{y}=\mathrm{3x}+\mathrm{2} \\ $$$$\mathrm{by}\:\mathrm{tangency}\:\Rightarrow\mathrm{y}=\mathrm{mx}+\sqrt{\mathrm{a}^{\mathrm{2}} \mathrm{m}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} } \\ $$$$\mathrm{where}\:\begin{cases}{\mathrm{m}=\mathrm{3}}\\{\sqrt{\mathrm{9a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} }\:=\:\mathrm{2}}\end{cases} \\ $$$$\mathrm{or}\:\mathrm{b}=\sqrt{\mathrm{4}−\mathrm{9a}^{\mathrm{2}} } \\ $$$$\mathrm{then}\:\mathrm{A}=\mathrm{f}\left(\mathrm{a}\right)=\pi\mathrm{a}\sqrt{\mathrm{4}−\mathrm{9a}^{\mathrm{2}} } \\ $$$$\mathrm{A}^{\mathrm{2}} \:=\:\pi^{\mathrm{2}} \mathrm{a}^{\mathrm{2}} \left(\mathrm{4}−\mathrm{9a}^{\mathrm{2}} \right) \\ $$$$\mathrm{9}\pi^{\mathrm{2}} \left(\mathrm{a}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{4}\pi^{\mathrm{2}} \mathrm{a}^{\mathrm{2}} +\mathrm{A}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Delta\:=\:\mathrm{16}\pi^{\mathrm{4}} −\mathrm{4}\left(\mathrm{9}\pi^{\mathrm{2}} \right)\mathrm{A}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Leftrightarrow\:\mathrm{4}\pi^{\mathrm{2}} =\mathrm{9A}^{\mathrm{2}} \:\Rightarrow\mathrm{A}=\frac{\mathrm{2}\pi}{\mathrm{3}}\:\leftarrow\mathrm{max}\:\mathrm{area} \\ $$

Answered by mr W last updated on 07/Feb/21

area of ellipse is  A=πab  since it touches the line 3x−y+2=0,  (3a)^2 +(−1×b)^2 =2^2   ⇒b^2 =4−9a^2     A=π(√(a^2 b^2 ))=π(√(a^2 (4−9a^2 )))=(π/3)(√(9a^2 (4−9a^2 )))  ≤(π/3)×((9a^2 +(4−9a^2 ))/2)=((2π)/3)  i.e. A_(max) =((2π)/3)  when 9a^2 =4−9a^2  ⇒a=((√2)/3) ⇒b=3a=(√2)

$${area}\:{of}\:{ellipse}\:{is} \\ $$$${A}=\pi{ab} \\ $$$${since}\:{it}\:{touches}\:{the}\:{line}\:\mathrm{3}{x}−{y}+\mathrm{2}=\mathrm{0}, \\ $$$$\left(\mathrm{3}{a}\right)^{\mathrm{2}} +\left(−\mathrm{1}×{b}\right)^{\mathrm{2}} =\mathrm{2}^{\mathrm{2}} \\ $$$$\Rightarrow{b}^{\mathrm{2}} =\mathrm{4}−\mathrm{9}{a}^{\mathrm{2}} \\ $$$$ \\ $$$${A}=\pi\sqrt{{a}^{\mathrm{2}} {b}^{\mathrm{2}} }=\pi\sqrt{{a}^{\mathrm{2}} \left(\mathrm{4}−\mathrm{9}{a}^{\mathrm{2}} \right)}=\frac{\pi}{\mathrm{3}}\sqrt{\mathrm{9}{a}^{\mathrm{2}} \left(\mathrm{4}−\mathrm{9}{a}^{\mathrm{2}} \right)} \\ $$$$\leqslant\frac{\pi}{\mathrm{3}}×\frac{\mathrm{9}{a}^{\mathrm{2}} +\left(\mathrm{4}−\mathrm{9}{a}^{\mathrm{2}} \right)}{\mathrm{2}}=\frac{\mathrm{2}\pi}{\mathrm{3}} \\ $$$${i}.{e}.\:{A}_{{max}} =\frac{\mathrm{2}\pi}{\mathrm{3}} \\ $$$${when}\:\mathrm{9}{a}^{\mathrm{2}} =\mathrm{4}−\mathrm{9}{a}^{\mathrm{2}} \:\Rightarrow{a}=\frac{\sqrt{\mathrm{2}}}{\mathrm{3}}\:\Rightarrow{b}=\mathrm{3}{a}=\sqrt{\mathrm{2}} \\ $$

Answered by ajfour last updated on 07/Feb/21

let  x=pt  ⇒  y=3pt+2  let  3p=1  ⇒  (t^2 /(9a^2 ))+(y^2 /b^2 )=1  Now max area  when  r=3a=b  (√2)=r=b=3a  A_(max) =((2π)/3)

$${let}\:\:{x}={pt} \\ $$$$\Rightarrow\:\:{y}=\mathrm{3}{pt}+\mathrm{2} \\ $$$${let}\:\:\mathrm{3}{p}=\mathrm{1} \\ $$$$\Rightarrow\:\:\frac{{t}^{\mathrm{2}} }{\mathrm{9}{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${Now}\:{max}\:{area}\:\:{when}\:\:{r}=\mathrm{3}{a}={b} \\ $$$$\sqrt{\mathrm{2}}={r}={b}=\mathrm{3}{a} \\ $$$${A}_{{max}} =\frac{\mathrm{2}\pi}{\mathrm{3}} \\ $$

Commented by ajfour last updated on 07/Feb/21

Commented by ajfour last updated on 07/Feb/21

3x=t

$$\mathrm{3}{x}={t} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com