Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 132333 by liberty last updated on 13/Feb/21

 very nice integral  ∫ ((4x^3 +4x^2 +4x+3)/((x^2 +1)(x^2 +x+1)^2 )) dx?

$$\:\mathrm{very}\:\mathrm{nice}\:\mathrm{integral} \\ $$$$\int\:\frac{\mathrm{4x}^{\mathrm{3}} +\mathrm{4x}^{\mathrm{2}} +\mathrm{4x}+\mathrm{3}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\:\mathrm{dx}? \\ $$$$ \\ $$

Answered by EDWIN88 last updated on 13/Feb/21

well... let me try  Ostrogradsky method  the integral has form   ∫ ((4x^3 +4x^2 +4x+3)/((x^2 +1)(x^2 +x+1)^2 )) dx=((ax+b)/(x^2 +x+1)) +∫ ((cx^3 +dx^2 +ex+f)/((x^2 +1)(x^2 +x+1))) dx  differentiating both sides   ((4x^3 +4x^2 +4x+3)/((x^2 +1)(x^2 +x+1)^2 )) = ((a(x^2 +x+1)−(ax+b)(2x+1))/((x^2 +x+1)^2 ))+((cx^3 +dx^2 +ex+f)/((x^2 +1)(x^2 +x+1)))  after solving the coefficients we get  a=1 , b=−1 ,c=0 , d=1 ,e=1 ,f = 1  then I = ((x−1)/(x^2 +x+1)) +∫ ((x^2 +x+1)/((x^2 +1)(x^2 +x+1)))dx  I= ((x−1)/(x^2 +x+1)) + ∫ (dx/(x^2 +1))= ((x−1)/(x^2 +x+1))+ arctan (x) + C

$$\mathrm{well}...\:\mathrm{let}\:\mathrm{me}\:\mathrm{try} \\ $$$$\mathrm{Ostrogradsky}\:\mathrm{method} \\ $$$$\mathrm{the}\:\mathrm{integral}\:\mathrm{has}\:\mathrm{form}\: \\ $$$$\int\:\frac{\mathrm{4x}^{\mathrm{3}} +\mathrm{4x}^{\mathrm{2}} +\mathrm{4x}+\mathrm{3}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\:\mathrm{dx}=\frac{\mathrm{ax}+\mathrm{b}}{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}\:+\int\:\frac{\mathrm{cx}^{\mathrm{3}} +\mathrm{dx}^{\mathrm{2}} +\mathrm{ex}+\mathrm{f}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)}\:\mathrm{dx} \\ $$$$\mathrm{differentiating}\:\mathrm{both}\:\mathrm{sides} \\ $$$$\:\frac{\mathrm{4x}^{\mathrm{3}} +\mathrm{4x}^{\mathrm{2}} +\mathrm{4x}+\mathrm{3}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\:=\:\frac{\mathrm{a}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)−\left(\mathrm{ax}+\mathrm{b}\right)\left(\mathrm{2x}+\mathrm{1}\right)}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }+\frac{\mathrm{cx}^{\mathrm{3}} +\mathrm{dx}^{\mathrm{2}} +\mathrm{ex}+\mathrm{f}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)} \\ $$$$\mathrm{after}\:\mathrm{solving}\:\mathrm{the}\:\mathrm{coefficients}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{a}=\mathrm{1}\:,\:\mathrm{b}=−\mathrm{1}\:,\mathrm{c}=\mathrm{0}\:,\:\mathrm{d}=\mathrm{1}\:,\mathrm{e}=\mathrm{1}\:,\mathrm{f}\:=\:\mathrm{1} \\ $$$$\mathrm{then}\:\mathrm{I}\:=\:\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}\:+\int\:\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)}\mathrm{dx} \\ $$$$\mathrm{I}=\:\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}\:+\:\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}=\:\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}+\:\mathrm{arctan}\:\left(\mathrm{x}\right)\:+\:\mathrm{C} \\ $$

Commented by liberty last updated on 13/Feb/21

  scho^  ne Lo^  sung

$$ \\ $$$$\mathrm{sch}\ddot {\mathrm{o}ne}\:\mathrm{L}\ddot {\mathrm{o}sung} \\ $$

Commented by SLVR last updated on 13/Feb/21

great job...nice sir

$${great}\:{job}...{nice}\:{sir} \\ $$

Commented by SLVR last updated on 13/Feb/21

but on differentiaion of RHS 1st part denominator  has no sqare...how...to proceed..

$${but}\:{on}\:{differentiaion}\:{of}\:{RHS}\:\mathrm{1}{st}\:{part}\:{denominator} \\ $$$${has}\:{no}\:{sqare}...{how}...{to}\:{proceed}.. \\ $$

Commented by EDWIN88 last updated on 13/Feb/21

oh it is only typo

$$\mathrm{oh}\:\mathrm{it}\:\mathrm{is}\:\mathrm{only}\:\mathrm{typo} \\ $$

Commented by SLVR last updated on 13/Feb/21

welcome sir..

$${welcome}\:{sir}.. \\ $$

Answered by EDWIN88 last updated on 13/Feb/21

∫ ((P(x))/(Q(x))) dx = ((P_1 (x))/(Q_1 (x))) + ∫ ((P_2 (x))/(Q_2 (x))) dx   where Q_1 (x)is gcd of Q(x) and Q′(x)  Q_2 (x)=((Q(x))/(Q_1 (x))) and P_1 (x) and P_2 (x) are   unknown polynomials of degree one less  than Q_1 (x) and Q_2 (x) respectively .   from the equation Q(x)=(x^2 +1)(x^2 +x+1)^2   Q′(x)=2x(x^2 +x+1)^2 +2(x^2 +1)(2x+1)(x^2 +x+1)  the gcd of Q(x) and Q′(x) is Q_1 (x)=x^2 +x+1  and Q_2 (x)=((Q(x))/(Q_1 (x)))= (x^2 +1)(x^2 +x+1)

$$\int\:\frac{\mathrm{P}\left(\mathrm{x}\right)}{\mathrm{Q}\left(\mathrm{x}\right)}\:\mathrm{dx}\:=\:\frac{\mathrm{P}_{\mathrm{1}} \left(\mathrm{x}\right)}{\mathrm{Q}_{\mathrm{1}} \left(\mathrm{x}\right)}\:+\:\int\:\frac{\mathrm{P}_{\mathrm{2}} \left(\mathrm{x}\right)}{\mathrm{Q}_{\mathrm{2}} \left(\mathrm{x}\right)}\:\mathrm{dx}\: \\ $$$$\mathrm{where}\:\mathrm{Q}_{\mathrm{1}} \left(\mathrm{x}\right)\mathrm{is}\:\mathrm{gcd}\:\mathrm{of}\:\mathrm{Q}\left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{Q}'\left(\mathrm{x}\right) \\ $$$$\mathrm{Q}_{\mathrm{2}} \left(\mathrm{x}\right)=\frac{\mathrm{Q}\left(\mathrm{x}\right)}{\mathrm{Q}_{\mathrm{1}} \left(\mathrm{x}\right)}\:\mathrm{and}\:\mathrm{P}_{\mathrm{1}} \left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{P}_{\mathrm{2}} \left(\mathrm{x}\right)\:\mathrm{are}\: \\ $$$$\mathrm{unknown}\:\mathrm{polynomials}\:\mathrm{of}\:\mathrm{degree}\:\mathrm{one}\:\mathrm{less} \\ $$$$\mathrm{than}\:\mathrm{Q}_{\mathrm{1}} \left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{Q}_{\mathrm{2}} \left(\mathrm{x}\right)\:\mathrm{respectively}\:.\: \\ $$$$\mathrm{from}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{Q}\left(\mathrm{x}\right)=\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\mathrm{Q}'\left(\mathrm{x}\right)=\mathrm{2x}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{2x}+\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right) \\ $$$$\mathrm{the}\:\mathrm{gcd}\:\mathrm{of}\:\mathrm{Q}\left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{Q}'\left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{Q}_{\mathrm{1}} \left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1} \\ $$$$\mathrm{and}\:\mathrm{Q}_{\mathrm{2}} \left(\mathrm{x}\right)=\frac{\mathrm{Q}\left(\mathrm{x}\right)}{\mathrm{Q}_{\mathrm{1}} \left(\mathrm{x}\right)}=\:\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com