Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 132402 by bramlexs22 last updated on 14/Feb/21

Find the circumference of an  ellipse (((x−2)^2 )/(16))+(y^2 /(25)) = 1

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{circumference}\:\mathrm{of}\:\mathrm{an} \\ $$$$\mathrm{ellipse}\:\frac{\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{16}}+\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{25}}\:=\:\mathrm{1} \\ $$

Commented by mr W last updated on 14/Feb/21

the perimeter of an ellipse can not  be exactly calculated.

$${the}\:{perimeter}\:{of}\:{an}\:{ellipse}\:{can}\:{not} \\ $$$${be}\:{exactly}\:{calculated}. \\ $$

Commented by mr W last updated on 14/Feb/21

Commented by bramlexs22 last updated on 14/Feb/21

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Commented by Dwaipayan Shikari last updated on 14/Feb/21

Sir , do you have any idea about the  derivation Ramanujan′s  approximation?

$${Sir}\:,\:{do}\:{you}\:{have}\:{any}\:{idea}\:{about}\:{the}\:\:{derivation}\:{Ramanujan}'{s} \\ $$$${approximation}? \\ $$

Commented by mr W last updated on 14/Feb/21

no. the genius didn′t tell how he  came to the formula.

$${no}.\:{the}\:{genius}\:{didn}'{t}\:{tell}\:{how}\:{he} \\ $$$${came}\:{to}\:{the}\:{formula}. \\ $$

Answered by EDWIN88 last updated on 14/Feb/21

 the equation of ellipse (((x−2)^2 )/4^2 ) + (y^2 /5^2 ) = 1   by using formula C = π[ 3(a+b)−(√((3a+b)(a+3b))) ]  in this case  { ((a=4)),((b=5)) :} ⇒ C = π [ 3(9)−(√((12+5)(4+15))) ]   C = π [ 27−(√(17×19)) ] ≈ 28.362

$$\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{ellipse}\:\frac{\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{4}^{\mathrm{2}} }\:+\:\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{5}^{\mathrm{2}} }\:=\:\mathrm{1}\: \\ $$$$\mathrm{by}\:\mathrm{using}\:\mathrm{formula}\:\mathrm{C}\:=\:\pi\left[\:\mathrm{3}\left({a}+{b}\right)−\sqrt{\left(\mathrm{3}{a}+{b}\right)\left({a}+\mathrm{3}{b}\right)}\:\right] \\ $$$$\mathrm{in}\:\mathrm{this}\:\mathrm{case}\:\begin{cases}{{a}=\mathrm{4}}\\{{b}=\mathrm{5}}\end{cases}\:\Rightarrow\:\mathrm{C}\:=\:\pi\:\left[\:\mathrm{3}\left(\mathrm{9}\right)−\sqrt{\left(\mathrm{12}+\mathrm{5}\right)\left(\mathrm{4}+\mathrm{15}\right)}\:\right] \\ $$$$\:\mathrm{C}\:=\:\pi\:\left[\:\mathrm{27}−\sqrt{\mathrm{17}×\mathrm{19}}\:\right]\:\approx\:\mathrm{28}.\mathrm{362}\: \\ $$

Answered by MJS_new last updated on 14/Feb/21

length of curve y=c(x) with α≤x≤β we have  L=∫_α ^β (√(1+(c′(x))^2 ))dx  for y=±(b/a)(√(a^2 −x^2 ))  L=(2/a)∫_(−a) ^a (√((a^4 −(a^2 −b^2 )x^2 )/(a^2 −x^2 )))dx=       [t=arcsin (x/a) → dx=(√(a^2 −x^2 ))dt]  =2a∫_(−π/2) ^(π/2) (√(1−((a^2 −b^2 )/a^2 )sin^2  t)) dt=  =2a[E (x∣((a^2 −b^2 )/a^2 ))]_(−π/2) ^(π/2)

$$\mathrm{length}\:\mathrm{of}\:\mathrm{curve}\:{y}={c}\left({x}\right)\:\mathrm{with}\:\alpha\leqslant{x}\leqslant\beta\:\mathrm{we}\:\mathrm{have} \\ $$$${L}=\underset{\alpha} {\overset{\beta} {\int}}\sqrt{\mathrm{1}+\left({c}'\left({x}\right)\right)^{\mathrm{2}} }{dx} \\ $$$$\mathrm{for}\:{y}=\pm\frac{{b}}{{a}}\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} } \\ $$$${L}=\frac{\mathrm{2}}{{a}}\underset{−{a}} {\overset{{a}} {\int}}\sqrt{\frac{{a}^{\mathrm{4}} −\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){x}^{\mathrm{2}} }{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{arcsin}\:\frac{{x}}{{a}}\:\rightarrow\:{dx}=\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }{dt}\right] \\ $$$$=\mathrm{2}{a}\underset{−\pi/\mathrm{2}} {\overset{\pi/\mathrm{2}} {\int}}\sqrt{\mathrm{1}−\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\mathrm{sin}^{\mathrm{2}} \:{t}}\:{dt}= \\ $$$$=\mathrm{2}{a}\left[\mathrm{E}\:\left({x}\mid\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)\right]_{−\pi/\mathrm{2}} ^{\pi/\mathrm{2}} \\ $$

Commented by MJS_new last updated on 14/Feb/21

I get approximately 28.3616678890

Answered by Dwaipayan Shikari last updated on 14/Feb/21

Perimeter  (x^2 /a^2 )+(y^2 /b^2 )=1⇒(x/a^2 )=−(y/b^2 )y′⇒y′=−((bx)/(a(√(a^2 −x^2 ))))  Arc length =  ∫_(−a) ^a (√(1+((dy/dx))^2 )) dx  Perimeter =2∫_(−a) ^a (√(1+((b^2 x^2 )/(a^2 (a^2 −x^2 ))))) dx  =(2/a)∫_(−a) ^a (√((a^4 −a^2 x^2 +b^2 x^2 )/(a^2 −x^2 )))                 x=au  =2∫_(−1) ^1 (√((a^2 (a^2 −a^2 u^2 +b^2 u^2 ))/(a^2 (1−u^2 )))) du        =2∫_(−(π/2)) ^(π/2) (√(a^2 sin^2 θ+b^2 cos^2 θ)) dθ     =2a∫_(−(π/2)) ^(π/2) (√((b^2 /a^2 )+e^2 sin^2 θ)) dθ=2b∫_(−(π/2)) ^(π/2) (√(1+((a^2 e^2 )/b^2 )sin^2 θ)) dθ  =4bE((π/2)∣((a^2 e^2 )/b^2 ))        (Elliptic integral of first kind)

$${Perimeter} \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\Rightarrow\frac{{x}}{{a}^{\mathrm{2}} }=−\frac{{y}}{{b}^{\mathrm{2}} }{y}'\Rightarrow{y}'=−\frac{{bx}}{{a}\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }} \\ $$$${Arc}\:{length}\:=\:\:\int_{−{a}} ^{{a}} \sqrt{\mathrm{1}+\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} }\:{dx} \\ $$$${Perimeter}\:=\mathrm{2}\int_{−{a}} ^{{a}} \sqrt{\mathrm{1}+\frac{{b}^{\mathrm{2}} {x}^{\mathrm{2}} }{{a}^{\mathrm{2}} \left({a}^{\mathrm{2}} −{x}^{\mathrm{2}} \right)}}\:{dx} \\ $$$$=\frac{\mathrm{2}}{{a}}\int_{−{a}} ^{{a}} \sqrt{\frac{{a}^{\mathrm{4}} −{a}^{\mathrm{2}} {x}^{\mathrm{2}} +{b}^{\mathrm{2}} {x}^{\mathrm{2}} }{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}={au} \\ $$$$=\mathrm{2}\int_{−\mathrm{1}} ^{\mathrm{1}} \sqrt{\frac{{a}^{\mathrm{2}} \left({a}^{\mathrm{2}} −{a}^{\mathrm{2}} {u}^{\mathrm{2}} +{b}^{\mathrm{2}} {u}^{\mathrm{2}} \right)}{{a}^{\mathrm{2}} \left(\mathrm{1}−{u}^{\mathrm{2}} \right)}}\:{du}\:\:\:\:\:\: \\ $$$$=\mathrm{2}\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{{a}^{\mathrm{2}} {sin}^{\mathrm{2}} \theta+{b}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta}\:{d}\theta\:\:\: \\ $$$$=\mathrm{2}{a}\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+{e}^{\mathrm{2}} {sin}^{\mathrm{2}} \theta}\:{d}\theta=\mathrm{2}{b}\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\mathrm{1}+\frac{{a}^{\mathrm{2}} {e}^{\mathrm{2}} }{{b}^{\mathrm{2}} }{sin}^{\mathrm{2}} \theta}\:{d}\theta \\ $$$$=\mathrm{4}{b}\boldsymbol{\mathrm{E}}\left(\frac{\pi}{\mathrm{2}}\mid\frac{{a}^{\mathrm{2}} {e}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\right)\:\:\:\:\:\:\:\:\left({Elliptic}\:{integral}\:{of}\:{first}\:{kind}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com