Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 132531 by bemath last updated on 15/Feb/21

Find minimum and maximum  value of function f(x)=(√(2sin x+3))−(√(sin x+1))

$$\mathrm{Find}\:\mathrm{minimum}\:\mathrm{and}\:\mathrm{maximum} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{2sin}\:\mathrm{x}+\mathrm{3}}−\sqrt{\mathrm{sin}\:\mathrm{x}+\mathrm{1}} \\ $$

Answered by liberty last updated on 15/Feb/21

((df(x))/dx)=((cos x)/( (√(2sin x+3))))−((cos x)/(2(√(sin x+1)))) =0   ((cos x)/( (√(2sin x+3)))) = ((cos x)/(2(√(sin x+1))))  cos^2 x(4sin x+4)=cos^2 x(2sin x+3)  cos^2 (x) [ 2sin x+1 ]=0   { ((cos^2 x=0 → { ((x=(π/2))),((x=((3π)/2))) :})),((sin x=−(1/2)→x=((7π)/6))) :}  (1)f((π/2))=(√(2sin (π/2)+3))−(√(sin (π/2)+1))            = (√5)−(√2) ≈ 0.8219  (2)f(((3π)/2))= (√(2sin ((3π)/2)+3))−(√(sin ((3π)/2)+1))  = (√1) −(√0) = 1 (maximum)  (3) f(((7π)/6))=(√(2sin ((7π)/6)+3))−(√(sin ((7π)/6)+1))   = (√2) −(1/( (√2))) = (1/( (√2))) ≈ 0.7071 (minimum)

$$\frac{\mathrm{df}\left(\mathrm{x}\right)}{\mathrm{dx}}=\frac{\mathrm{cos}\:\mathrm{x}}{\:\sqrt{\mathrm{2sin}\:\mathrm{x}+\mathrm{3}}}−\frac{\mathrm{cos}\:\mathrm{x}}{\mathrm{2}\sqrt{\mathrm{sin}\:\mathrm{x}+\mathrm{1}}}\:=\mathrm{0} \\ $$$$\:\frac{\mathrm{cos}\:\mathrm{x}}{\:\sqrt{\mathrm{2sin}\:\mathrm{x}+\mathrm{3}}}\:=\:\frac{\mathrm{cos}\:\mathrm{x}}{\mathrm{2}\sqrt{\mathrm{sin}\:\mathrm{x}+\mathrm{1}}} \\ $$$$\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}\left(\mathrm{4sin}\:\mathrm{x}+\mathrm{4}\right)=\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}\left(\mathrm{2sin}\:\mathrm{x}+\mathrm{3}\right) \\ $$$$\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{x}\right)\:\left[\:\mathrm{2sin}\:\mathrm{x}+\mathrm{1}\:\right]=\mathrm{0} \\ $$$$\begin{cases}{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}=\mathrm{0}\:\rightarrow\begin{cases}{\mathrm{x}=\frac{\pi}{\mathrm{2}}}\\{\mathrm{x}=\frac{\mathrm{3}\pi}{\mathrm{2}}}\end{cases}}\\{\mathrm{sin}\:\mathrm{x}=−\frac{\mathrm{1}}{\mathrm{2}}\rightarrow\mathrm{x}=\frac{\mathrm{7}\pi}{\mathrm{6}}}\end{cases} \\ $$$$\left(\mathrm{1}\right)\mathrm{f}\left(\frac{\pi}{\mathrm{2}}\right)=\sqrt{\mathrm{2sin}\:\frac{\pi}{\mathrm{2}}+\mathrm{3}}−\sqrt{\mathrm{sin}\:\frac{\pi}{\mathrm{2}}+\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:\sqrt{\mathrm{5}}−\sqrt{\mathrm{2}}\:\approx\:\mathrm{0}.\mathrm{8219} \\ $$$$\left(\mathrm{2}\right)\mathrm{f}\left(\frac{\mathrm{3}\pi}{\mathrm{2}}\right)=\:\sqrt{\mathrm{2sin}\:\frac{\mathrm{3}\pi}{\mathrm{2}}+\mathrm{3}}−\sqrt{\mathrm{sin}\:\frac{\mathrm{3}\pi}{\mathrm{2}}+\mathrm{1}} \\ $$$$=\:\sqrt{\mathrm{1}}\:−\sqrt{\mathrm{0}}\:=\:\mathrm{1}\:\left(\mathrm{maximum}\right) \\ $$$$\left(\mathrm{3}\right)\:\mathrm{f}\left(\frac{\mathrm{7}\pi}{\mathrm{6}}\right)=\sqrt{\mathrm{2sin}\:\frac{\mathrm{7}\pi}{\mathrm{6}}+\mathrm{3}}−\sqrt{\mathrm{sin}\:\frac{\mathrm{7}\pi}{\mathrm{6}}+\mathrm{1}} \\ $$$$\:=\:\sqrt{\mathrm{2}}\:−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\approx\:\mathrm{0}.\mathrm{7071}\:\left(\mathrm{minimum}\right) \\ $$

Commented by liberty last updated on 15/Feb/21

Answered by MJS_new last updated on 15/Feb/21

y=(√(3+2sin x))−(√(1+sin x))  let (√(1+sin x))=u∧0≤u≤(√2)  y=(√(2u^2 +1))−u  (dy/du)=((2u−(√(2u^2 +1)))/( (√(2u^2 +1))))=0 ⇒ u=((√2)/2)  ⇒  0≤u≤(√2) ⇒ ((√2)/2)≤y≤1

$${y}=\sqrt{\mathrm{3}+\mathrm{2sin}\:{x}}−\sqrt{\mathrm{1}+\mathrm{sin}\:{x}} \\ $$$$\mathrm{let}\:\sqrt{\mathrm{1}+\mathrm{sin}\:{x}}={u}\wedge\mathrm{0}\leqslant{u}\leqslant\sqrt{\mathrm{2}} \\ $$$${y}=\sqrt{\mathrm{2}{u}^{\mathrm{2}} +\mathrm{1}}−{u} \\ $$$$\frac{{dy}}{{du}}=\frac{\mathrm{2}{u}−\sqrt{\mathrm{2}{u}^{\mathrm{2}} +\mathrm{1}}}{\:\sqrt{\mathrm{2}{u}^{\mathrm{2}} +\mathrm{1}}}=\mathrm{0}\:\Rightarrow\:{u}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\Rightarrow \\ $$$$\mathrm{0}\leqslant{u}\leqslant\sqrt{\mathrm{2}}\:\Rightarrow\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\leqslant{y}\leqslant\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com