Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 132697 by liberty last updated on 15/Feb/21

Find the condition that one  root of ax^2 +bx+c = 0 ,a≠ 0  is square of the other .

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{condition}\:\mathrm{that}\:\mathrm{one} \\ $$$$\mathrm{root}\:\mathrm{of}\:{ax}^{\mathrm{2}} +{bx}+{c}\:=\:\mathrm{0}\:,{a}\neq\:\mathrm{0} \\ $$$$\mathrm{is}\:\mathrm{square}\:\mathrm{of}\:\mathrm{the}\:\mathrm{other}\:. \\ $$

Commented by liberty last updated on 16/Feb/21

okay

$$\mathrm{okay} \\ $$

Commented by mr W last updated on 16/Feb/21

α+α^2 =−(b/a)  α×α^2 =(c/a)  ⇒α=((c/a))^(1/3)   ⇒α(1+α)=((c/a))^(1/3) (1+((c/a))^(1/3) )=−(b/a)  ⇒(b/a)+((c/a))^(1/3) (1+((c/a))^(1/3) )=0

$$\alpha+\alpha^{\mathrm{2}} =−\frac{{b}}{{a}} \\ $$$$\alpha×\alpha^{\mathrm{2}} =\frac{{c}}{{a}} \\ $$$$\Rightarrow\alpha=\sqrt[{\mathrm{3}}]{\frac{{c}}{{a}}} \\ $$$$\Rightarrow\alpha\left(\mathrm{1}+\alpha\right)=\sqrt[{\mathrm{3}}]{\frac{{c}}{{a}}}\left(\mathrm{1}+\sqrt[{\mathrm{3}}]{\frac{{c}}{{a}}}\right)=−\frac{{b}}{{a}} \\ $$$$\Rightarrow\frac{{b}}{{a}}+\sqrt[{\mathrm{3}}]{\frac{{c}}{{a}}}\left(\mathrm{1}+\sqrt[{\mathrm{3}}]{\frac{{c}}{{a}}}\right)=\mathrm{0} \\ $$

Answered by EDWIN88 last updated on 16/Feb/21

 Suppose υ is a root and that the other one  is υ^2  . By Vietha′s rule  { ((υ+υ^2 =−(b/a))),((υ^3  = (c/a))) :}  We have υ = 0 if only if b=c=0  let we assume that υ ≠ 0   Therefore ((1+υ)/υ^2 ) = −(b/c) ⇒bυ^2 +cυ+c = 0  on the other hand we find aυ^2 +bυ+c = 0  substract the two relations we get   (a−b)υ^2 +(b−c)υ  = 0   (a−b)υ +(b−c)=0→υ=((c−b)/(a−b))  but we can the two relations multiplying   the top one by a and the bottom by b   { ((abυ^2 +acυ + ac = 0)),((abυ^2  +b^2 υ +bc = 0)) :}  subtract (ac−b^2 )υ+(ac−bc)= 0→υ=((bc−ac)/(ac−b^2 ))  that expands to a^2 c +ac^2  −3abc + b^3  = 0

$$\:\mathrm{Suppose}\:\upsilon\:\mathrm{is}\:\mathrm{a}\:\mathrm{root}\:\mathrm{and}\:\mathrm{that}\:\mathrm{the}\:\mathrm{other}\:\mathrm{one} \\ $$$$\mathrm{is}\:\upsilon^{\mathrm{2}} \:.\:\mathrm{By}\:\mathrm{Vietha}'\mathrm{s}\:\mathrm{rule}\:\begin{cases}{\upsilon+\upsilon^{\mathrm{2}} =−\frac{{b}}{{a}}}\\{\upsilon^{\mathrm{3}} \:=\:\frac{\mathrm{c}}{{a}}}\end{cases} \\ $$$${W}\mathrm{e}\:\mathrm{have}\:\upsilon\:=\:\mathrm{0}\:\mathrm{if}\:\mathrm{only}\:\mathrm{if}\:\mathrm{b}=\mathrm{c}=\mathrm{0} \\ $$$$\mathrm{let}\:\mathrm{we}\:\mathrm{assume}\:\mathrm{that}\:\upsilon\:\neq\:\mathrm{0}\: \\ $$$$\mathrm{Therefore}\:\frac{\mathrm{1}+\upsilon}{\upsilon^{\mathrm{2}} }\:=\:−\frac{{b}}{{c}}\:\Rightarrow{b}\upsilon^{\mathrm{2}} +{c}\upsilon+{c}\:=\:\mathrm{0} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{other}\:\mathrm{hand}\:\mathrm{we}\:\mathrm{find}\:{a}\upsilon^{\mathrm{2}} +\mathrm{b}\upsilon+\mathrm{c}\:=\:\mathrm{0} \\ $$$$\mathrm{substract}\:\mathrm{the}\:\mathrm{two}\:\mathrm{relations}\:\mathrm{we}\:\mathrm{get}\: \\ $$$$\left({a}−{b}\right)\upsilon^{\mathrm{2}} +\left({b}−{c}\right)\upsilon\:\:=\:\mathrm{0}\: \\ $$$$\left({a}−{b}\right)\upsilon\:+\left({b}−{c}\right)=\mathrm{0}\rightarrow\upsilon=\frac{{c}−{b}}{{a}−{b}} \\ $$$${but}\:{we}\:{can}\:{the}\:{two}\:{relations}\:{multiplying}\: \\ $$$${the}\:{top}\:{one}\:{by}\:{a}\:{and}\:{the}\:{bottom}\:{by}\:{b} \\ $$$$\begin{cases}{{ab}\upsilon^{\mathrm{2}} +{ac}\upsilon\:+\:{ac}\:=\:\mathrm{0}}\\{{ab}\upsilon^{\mathrm{2}} \:+{b}^{\mathrm{2}} \upsilon\:+{bc}\:=\:\mathrm{0}}\end{cases} \\ $$$${subtract}\:\left({ac}−{b}^{\mathrm{2}} \right)\upsilon+\left({ac}−{bc}\right)=\:\mathrm{0}\rightarrow\upsilon=\frac{{bc}−{ac}}{{ac}−{b}^{\mathrm{2}} } \\ $$$${that}\:{expands}\:{to}\:{a}^{\mathrm{2}} {c}\:+{ac}^{\mathrm{2}} \:−\mathrm{3}{abc}\:+\:{b}^{\mathrm{3}} \:=\:\mathrm{0} \\ $$$$ \\ $$$$ \\ $$

Commented by liberty last updated on 16/Feb/21

okay

$$\mathrm{okay} \\ $$

Commented by EDWIN88 last updated on 16/Feb/21

let for case  { ((a=1 ; b=−2)),((c+c^2 +6c−8=0 ⇒c^2 +7c−8=0)) :}  (c+8)(c−1)=0  { ((c=−8)),((c=1)) :}  If (a,b,c)=(1,−2,−8)⇒x^2 −2x−8=0   (x−4)(x+2)=0 ⇒x_1 =4 ∧ x_2 =−2  and (−2)^2 = 4

$$\mathrm{let}\:\mathrm{for}\:\mathrm{case}\:\begin{cases}{{a}=\mathrm{1}\:;\:{b}=−\mathrm{2}}\\{{c}+{c}^{\mathrm{2}} +\mathrm{6}{c}−\mathrm{8}=\mathrm{0}\:\Rightarrow{c}^{\mathrm{2}} +\mathrm{7}{c}−\mathrm{8}=\mathrm{0}}\end{cases} \\ $$$$\left({c}+\mathrm{8}\right)\left({c}−\mathrm{1}\right)=\mathrm{0}\:\begin{cases}{{c}=−\mathrm{8}}\\{{c}=\mathrm{1}}\end{cases} \\ $$$$\mathrm{If}\:\left({a},\mathrm{b},\mathrm{c}\right)=\left(\mathrm{1},−\mathrm{2},−\mathrm{8}\right)\Rightarrow{x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{8}=\mathrm{0} \\ $$$$\:\left({x}−\mathrm{4}\right)\left({x}+\mathrm{2}\right)=\mathrm{0}\:\Rightarrow\mathrm{x}_{\mathrm{1}} =\mathrm{4}\:\wedge\:\mathrm{x}_{\mathrm{2}} =−\mathrm{2} \\ $$$$\mathrm{and}\:\left(−\mathrm{2}\right)^{\mathrm{2}} =\:\mathrm{4}\: \\ $$

Answered by MJS_new last updated on 16/Feb/21

a(x−α^2 )(x−α)=0  ax^2 −aα(α+1)x+aα^3 =0  b=−aα(α+1)  c=aα^3   not sure what else you need...

$${a}\left({x}−\alpha^{\mathrm{2}} \right)\left({x}−\alpha\right)=\mathrm{0} \\ $$$${ax}^{\mathrm{2}} −{a}\alpha\left(\alpha+\mathrm{1}\right){x}+{a}\alpha^{\mathrm{3}} =\mathrm{0} \\ $$$${b}=−{a}\alpha\left(\alpha+\mathrm{1}\right) \\ $$$${c}={a}\alpha^{\mathrm{3}} \\ $$$$\mathrm{not}\:\mathrm{sure}\:\mathrm{what}\:\mathrm{else}\:\mathrm{you}\:\mathrm{need}... \\ $$

Commented by liberty last updated on 16/Feb/21

relation for a,b and c sir

$$\mathrm{relation}\:\mathrm{for}\:\mathrm{a},\mathrm{b}\:\mathrm{and}\:\mathrm{c}\:\mathrm{sir} \\ $$

Commented by MJS_new last updated on 16/Feb/21

a(x^2 +(b/a)x+(c/a))=0  x^2 +px+q=0  (x−α^2 )(x−α)=x^2 +px+q  ⇔  p=−α(α+1)∧q=α^3   ⇔  p+q^(2/3) +q^(1/3) =0  ⇔  p=−(1+q^(1/3) )q^(1/3)  ⇔ q=((3p−1±(p−1)(√(1−4p)))/2)  or  p^3 −3pq+q^2 +q=0    with p=(b/a)∧q=(c/a) we get  a=((3b−c)/2)±((b−c)/2)(√(1−((4b)/c)))  ⇔  b=a^(1/3) (a^(1/3) +c^(1/3) )c^(1/3)   ⇔  c=((3b−a)/2)±((b−a)/2)(√(1−((4b)/a)))  or  a^2 c−3abc+ac^2 +b^3 =0

$${a}\left({x}^{\mathrm{2}} +\frac{{b}}{{a}}{x}+\frac{{c}}{{a}}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{2}} +{px}+{q}=\mathrm{0} \\ $$$$\left({x}−\alpha^{\mathrm{2}} \right)\left({x}−\alpha\right)={x}^{\mathrm{2}} +{px}+{q} \\ $$$$\Leftrightarrow \\ $$$${p}=−\alpha\left(\alpha+\mathrm{1}\right)\wedge{q}=\alpha^{\mathrm{3}} \\ $$$$\Leftrightarrow \\ $$$${p}+{q}^{\mathrm{2}/\mathrm{3}} +{q}^{\mathrm{1}/\mathrm{3}} =\mathrm{0} \\ $$$$\Leftrightarrow \\ $$$${p}=−\left(\mathrm{1}+{q}^{\mathrm{1}/\mathrm{3}} \right){q}^{\mathrm{1}/\mathrm{3}} \:\Leftrightarrow\:{q}=\frac{\mathrm{3}{p}−\mathrm{1}\pm\left({p}−\mathrm{1}\right)\sqrt{\mathrm{1}−\mathrm{4}{p}}}{\mathrm{2}} \\ $$$$\mathrm{or} \\ $$$${p}^{\mathrm{3}} −\mathrm{3}{pq}+{q}^{\mathrm{2}} +{q}=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{with}\:{p}=\frac{{b}}{{a}}\wedge{q}=\frac{{c}}{{a}}\:\mathrm{we}\:\mathrm{get} \\ $$$${a}=\frac{\mathrm{3}{b}−{c}}{\mathrm{2}}\pm\frac{{b}−{c}}{\mathrm{2}}\sqrt{\mathrm{1}−\frac{\mathrm{4}{b}}{{c}}} \\ $$$$\Leftrightarrow \\ $$$${b}={a}^{\mathrm{1}/\mathrm{3}} \left({a}^{\mathrm{1}/\mathrm{3}} +{c}^{\mathrm{1}/\mathrm{3}} \right){c}^{\mathrm{1}/\mathrm{3}} \\ $$$$\Leftrightarrow \\ $$$${c}=\frac{\mathrm{3}{b}−{a}}{\mathrm{2}}\pm\frac{{b}−{a}}{\mathrm{2}}\sqrt{\mathrm{1}−\frac{\mathrm{4}{b}}{{a}}} \\ $$$$\mathrm{or} \\ $$$${a}^{\mathrm{2}} {c}−\mathrm{3}{abc}+{ac}^{\mathrm{2}} +{b}^{\mathrm{3}} =\mathrm{0} \\ $$

Answered by Rasheed.Sindhi last updated on 16/Feb/21

 { ((α+α^2 =−(b/a))),((α^3 =(c/a))) :}  (α+α^2 )^3 =(−(b/a))^3   α^3 +(α^3 )^2 +3α^3 (α+α^2 )=−(b^3 /a^3 )  (c/a)+((c/a))^2 +3((c/a))(−(b/a))+(b^3 /a^3 )=0  (c/a)+(c^2 /a^2 )−((3bc)/a^2 )+(b^3 /a^3 )=0  a^2 c+ac^2 −3abc+b^3 =0  ac(a+c)+b(b^2 −3ac)=0

$$\begin{cases}{\alpha+\alpha^{\mathrm{2}} =−\frac{{b}}{{a}}}\\{\alpha^{\mathrm{3}} =\frac{{c}}{{a}}}\end{cases} \\ $$$$\left(\alpha+\alpha^{\mathrm{2}} \right)^{\mathrm{3}} =\left(−\frac{{b}}{{a}}\right)^{\mathrm{3}} \\ $$$$\alpha^{\mathrm{3}} +\left(\alpha^{\mathrm{3}} \right)^{\mathrm{2}} +\mathrm{3}\alpha^{\mathrm{3}} \left(\alpha+\alpha^{\mathrm{2}} \right)=−\frac{{b}^{\mathrm{3}} }{{a}^{\mathrm{3}} } \\ $$$$\frac{{c}}{{a}}+\left(\frac{{c}}{{a}}\right)^{\mathrm{2}} +\mathrm{3}\left(\frac{{c}}{{a}}\right)\left(−\frac{{b}}{{a}}\right)+\frac{{b}^{\mathrm{3}} }{{a}^{\mathrm{3}} }=\mathrm{0} \\ $$$$\frac{{c}}{{a}}+\frac{{c}^{\mathrm{2}} }{{a}^{\mathrm{2}} }−\frac{\mathrm{3}{bc}}{{a}^{\mathrm{2}} }+\frac{{b}^{\mathrm{3}} }{{a}^{\mathrm{3}} }=\mathrm{0} \\ $$$${a}^{\mathrm{2}} {c}+{ac}^{\mathrm{2}} −\mathrm{3}{abc}+{b}^{\mathrm{3}} =\mathrm{0} \\ $$$${ac}\left({a}+{c}\right)+{b}\left({b}^{\mathrm{2}} −\mathrm{3}{ac}\right)=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com