Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 132708 by frc2crc last updated on 16/Feb/21

∫_(−∞) ^∞ ((x^2 cos (px+q))/(x^2 +(p+q)^2 ))dx

$$\int_{−\infty} ^{\infty} \frac{{x}^{\mathrm{2}} \mathrm{cos}\:\left({px}+{q}\right)}{{x}^{\mathrm{2}} +\left({p}+{q}\right)^{\mathrm{2}} }{dx} \\ $$

Answered by Olaf last updated on 16/Feb/21

  Ω = ∫_(−∞) ^(+∞) ((x^2 cos(px+q))/(x^2 +(p+q)^2 ))dx  Ω = ∫_(−∞) ^(+∞) ((x^2 [cos(px)cosq−sin(px)sinq])/(x^2 +(p+q)^2 ))dx  Ω = cosq∫_(−∞) ^(+∞) ((x^2 cos(px))/(x^2 +(p+q)^2 ))dx  ...  now see Q.132090 by rs4090

$$ \\ $$$$\Omega\:=\:\int_{−\infty} ^{+\infty} \frac{{x}^{\mathrm{2}} \mathrm{cos}\left({px}+{q}\right)}{{x}^{\mathrm{2}} +\left({p}+{q}\right)^{\mathrm{2}} }{dx} \\ $$$$\Omega\:=\:\int_{−\infty} ^{+\infty} \frac{{x}^{\mathrm{2}} \left[\mathrm{cos}\left({px}\right)\mathrm{cos}{q}−\mathrm{sin}\left({px}\right)\mathrm{sin}{q}\right]}{{x}^{\mathrm{2}} +\left({p}+{q}\right)^{\mathrm{2}} }{dx} \\ $$$$\Omega\:=\:\mathrm{cos}{q}\int_{−\infty} ^{+\infty} \frac{{x}^{\mathrm{2}} \mathrm{cos}\left({px}\right)}{{x}^{\mathrm{2}} +\left({p}+{q}\right)^{\mathrm{2}} }{dx} \\ $$$$... \\ $$$$\mathrm{now}\:\mathrm{see}\:\mathrm{Q}.\mathrm{132090}\:\mathrm{by}\:\mathrm{rs4090} \\ $$

Answered by mathmax by abdo last updated on 16/Feb/21

Φ=∫_(−∞) ^(+∞)  ((x^2  cos(px+q))/(x^2  +(p+q)^2 )) dx  wetake p+q>0 ⇒Φ=_(x=(p+q)t)   =∫_(−∞) ^(+∞)  (((p+q)^2 t^2  cos(p(p+q)t +q))/((p+q)^2 (t^2  +1)))(p+q)dt  =(p+q)∫_(−∞) ^(+∞)  ((t^2  cos((p^2  +pq)t +q))/(t^2  +1))dt =(p+q)Re(∫_(−∞) ^(+∞) ((t^2  e^(i(p^2 +pq)t+q) )/(t^2  +1))dt)  ϕ(z) =((z^2  e^(i((p^2 +pq)t+q)) )/(z^2  +1))  but lim_(z→∞) ∣zϕ(z)∣⇏0 this integral is not  convergent....!

$$\Phi=\int_{−\infty} ^{+\infty} \:\frac{\mathrm{x}^{\mathrm{2}} \:\mathrm{cos}\left(\mathrm{px}+\mathrm{q}\right)}{\mathrm{x}^{\mathrm{2}} \:+\left(\mathrm{p}+\mathrm{q}\right)^{\mathrm{2}} }\:\mathrm{dx}\:\:\mathrm{wetake}\:\mathrm{p}+\mathrm{q}>\mathrm{0}\:\Rightarrow\Phi=_{\mathrm{x}=\left(\mathrm{p}+\mathrm{q}\right)\mathrm{t}} \\ $$$$=\int_{−\infty} ^{+\infty} \:\frac{\left(\mathrm{p}+\mathrm{q}\right)^{\mathrm{2}} \mathrm{t}^{\mathrm{2}} \:\mathrm{cos}\left(\mathrm{p}\left(\mathrm{p}+\mathrm{q}\right)\mathrm{t}\:+\mathrm{q}\right)}{\left(\mathrm{p}+\mathrm{q}\right)^{\mathrm{2}} \left(\mathrm{t}^{\mathrm{2}} \:+\mathrm{1}\right)}\left(\mathrm{p}+\mathrm{q}\right)\mathrm{dt} \\ $$$$=\left(\mathrm{p}+\mathrm{q}\right)\int_{−\infty} ^{+\infty} \:\frac{\mathrm{t}^{\mathrm{2}} \:\mathrm{cos}\left(\left(\mathrm{p}^{\mathrm{2}} \:+\mathrm{pq}\right)\mathrm{t}\:+\mathrm{q}\right)}{\mathrm{t}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dt}\:=\left(\mathrm{p}+\mathrm{q}\right)\mathrm{Re}\left(\int_{−\infty} ^{+\infty} \frac{\mathrm{t}^{\mathrm{2}} \:\mathrm{e}^{\mathrm{i}\left(\mathrm{p}^{\mathrm{2}} +\mathrm{pq}\right)\mathrm{t}+\mathrm{q}} }{\mathrm{t}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dt}\right) \\ $$$$\varphi\left(\mathrm{z}\right)\:=\frac{\mathrm{z}^{\mathrm{2}} \:\mathrm{e}^{\mathrm{i}\left(\left(\mathrm{p}^{\mathrm{2}} +\mathrm{pq}\right)\mathrm{t}+\mathrm{q}\right)} }{\mathrm{z}^{\mathrm{2}} \:+\mathrm{1}}\:\:\mathrm{but}\:\mathrm{lim}_{\mathrm{z}\rightarrow\infty} \mid\mathrm{z}\varphi\left(\mathrm{z}\right)\mid\nRightarrow\mathrm{0}\:\mathrm{this}\:\mathrm{integral}\:\mathrm{is}\:\mathrm{not} \\ $$$$\mathrm{convergent}....! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com