Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 132809 by mr W last updated on 17/Feb/21

Commented by mr W last updated on 18/Feb/21

a mountain has the shape of a right  circular cone as shown (h>(√3)r).  from point A to point B two  sightseeing roads one time around  the mountain should be built:  road I with the shortest length.  road II with a constant slope.  1. find the lengthes of both roads.  2. do the both roads cross in the middle?  if yes, where?

$${a}\:{mountain}\:{has}\:{the}\:{shape}\:{of}\:{a}\:{right} \\ $$$${circular}\:{cone}\:{as}\:{shown}\:\left({h}>\sqrt{\mathrm{3}}{r}\right). \\ $$$${from}\:{point}\:{A}\:{to}\:{point}\:{B}\:{two} \\ $$$${sightseeing}\:{roads}\:{one}\:{time}\:{around} \\ $$$${the}\:{mountain}\:{should}\:{be}\:{built}: \\ $$$${road}\:{I}\:{with}\:{the}\:{shortest}\:{length}. \\ $$$${road}\:{II}\:{with}\:{a}\:{constant}\:{slope}. \\ $$$$\mathrm{1}.\:{find}\:{the}\:{lengthes}\:{of}\:{both}\:{roads}. \\ $$$$\mathrm{2}.\:{do}\:{the}\:{both}\:{roads}\:{cross}\:{in}\:{the}\:{middle}? \\ $$$${if}\:{yes},\:{where}? \\ $$

Commented by bramlexs22 last updated on 17/Feb/21

sθ = 2πr ⇒θ = ((2πr)/s) ; s = (√(r^2 +h^2 ))  θ = ((2πr)/( (√(r^2 +h^2 )))) . let AB = x    AB^2  = (s−x)^2 +s^2 −2s.(s−x)cos (((2πr)/( (√(r^2 +h^2 )))))

$$\mathrm{s}\theta\:=\:\mathrm{2}\pi\mathrm{r}\:\Rightarrow\theta\:=\:\frac{\mathrm{2}\pi\mathrm{r}}{\mathrm{s}}\:;\:\mathrm{s}\:=\:\sqrt{\mathrm{r}^{\mathrm{2}} +\mathrm{h}^{\mathrm{2}} } \\ $$$$\theta\:=\:\frac{\mathrm{2}\pi\mathrm{r}}{\:\sqrt{\mathrm{r}^{\mathrm{2}} +\mathrm{h}^{\mathrm{2}} }}\:.\:\mathrm{let}\:\mathrm{AB}\:=\:\mathrm{x}\: \\ $$$$\:\mathrm{AB}^{\mathrm{2}} \:=\:\left(\mathrm{s}−\mathrm{x}\right)^{\mathrm{2}} +\mathrm{s}^{\mathrm{2}} −\mathrm{2s}.\left(\mathrm{s}−\mathrm{x}\right)\mathrm{cos}\:\left(\frac{\mathrm{2}\pi\mathrm{r}}{\:\sqrt{\mathrm{r}^{\mathrm{2}} +\mathrm{h}^{\mathrm{2}} }}\right) \\ $$$$ \\ $$

Commented by mr W last updated on 17/Feb/21

this is for road I. thanks!  give also a try for road II ?

$${this}\:{is}\:{for}\:{road}\:{I}.\:{thanks}! \\ $$$${give}\:{also}\:{a}\:{try}\:{for}\:{road}\:{II}\:? \\ $$

Commented by ajfour last updated on 17/Feb/21

need to know- how the ′slope′ in  ′constant slope′ is defined;  two options, i think:  (dz/(rdθ))    (dz≠dl) ;  r=(√(x^2 +y^2 ))    OR  (dz/( (√((rdθ)^2 +(dl)^2 ))))  ;  l=(√(x^2 +y^2 +(h−z)^2 ))

$${need}\:{to}\:{know}-\:{how}\:{the}\:'{slope}'\:{in} \\ $$$$'{constant}\:{slope}'\:{is}\:{defined}; \\ $$$${two}\:{options},\:{i}\:{think}: \\ $$$$\frac{{dz}}{{rd}\theta}\:\:\:\:\left({dz}\neq{dl}\right)\:;\:\:{r}=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:\:\:\:{OR} \\ $$$$\frac{{dz}}{\:\sqrt{\left({rd}\theta\right)^{\mathrm{2}} +\left({dl}\right)^{\mathrm{2}} }}\:\:;\:\:{l}=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\left({h}−{z}\right)^{\mathrm{2}} } \\ $$$$ \\ $$

Commented by mr W last updated on 17/Feb/21

definition of slope:  from (x,y,z) to (x+Δx,y+Δh,z+Δz)  slope=((Δz)/( (√((Δx)^2 +(Δy)^2 ))))=((Δz)/( (√((Δl)^2 −(Δz)^2 ))))  with Δl=(√((Δx)^2 +(Δy)^2 +(Δz)^2 ))

$${definition}\:{of}\:{slope}: \\ $$$${from}\:\left({x},{y},{z}\right)\:{to}\:\left({x}+\Delta{x},{y}+\Delta{h},{z}+\Delta{z}\right) \\ $$$${slope}=\frac{\Delta{z}}{\:\sqrt{\left(\Delta{x}\right)^{\mathrm{2}} +\left(\Delta{y}\right)^{\mathrm{2}} }}=\frac{\Delta{z}}{\:\sqrt{\left(\Delta{l}\right)^{\mathrm{2}} −\left(\Delta{z}\right)^{\mathrm{2}} }} \\ $$$${with}\:\Delta{l}=\sqrt{\left(\Delta{x}\right)^{\mathrm{2}} +\left(\Delta{y}\right)^{\mathrm{2}} +\left(\Delta{z}\right)^{\mathrm{2}} } \\ $$

Commented by mr W last updated on 18/Feb/21

could you go with this definition sir?

$${could}\:{you}\:{go}\:{with}\:{this}\:{definition}\:{sir}? \\ $$

Answered by mr W last updated on 18/Feb/21

Commented by mr W last updated on 17/Feb/21

P=peak of mountain  let λ=(r/h)  γ=tan^(−1) (r/h)=tan^(−1) λ  s_A =PA  s_B =PB  s_A =(√(h^2 +r^2 ))=h (√(1+λ^2 ))  (s_B /(sin ((π/2)−θ)))=(h/(sin ((π/2)−θ+γ)))  s_B =((cos θ h)/(cos (θ−γ)))=(h/(cos γ+sin γ tan θ))  s_B =((h(√(1+λ^2 )))/(1+λtan θ))    when the surface of the cone is  unfolded, the shortest road from  A to B is the straight line AB.  AA^(⌢) ′=2πr  ϕ=((2πr)/s_A )=((2πr)/( (√(h^2 +r^2 ))))=((2πλ)/( (√(1+λ^2 ))))  (assume ϕ<π, i.e. λ<(1/( (√3))) or γ<30°)    length of road =L_I   L_I =AB=(√(s_A ^2 +s_B ^2 −2s_A s_B cos ϕ))  L_I =(√(h^2 +r^2 +((h^2 (1+λ^2 ))/((1+λtan θ)^2 ))−((2h(√((1+λ^2 )(h^2 +r^2 ))))/(1+λtan θ)) cos ((2πλ)/( (√(1+λ^2 ))))))  (L_I /h)=(√((1+λ^2 )[1+(1/((1+λtan θ)^2 ))−(2/(1+λtan θ)) cos ((2πλ)/( (√(1+λ^2 ))))]))    example:  λ=(1/3), θ=45°  (L_I /h)=(5/(12))(√(10(1−((24)/(25)) cos (((√(10))π)/( 5)))))≈1.552354    we see by road I, the point B is not  always the highest point on the road.  the highest point on the road has the  closest distance to the peak P, this  is the point M.  ((sin (ϕ+α))/(sin α))=(s_A /s_B )  ((sin ϕ)/(tan α))+cos ϕ=1+λtan θ  tan α=((sin ϕ)/(1+λtan θ−cos ϕ))  s_M =PM=s_A  sin α  ⇒s_M =((h(√(1+λ^2 )) sin ϕ)/( (√(1+(1+λtan θ)(1+λtan θ−2cos ϕ)))))

$${P}={peak}\:{of}\:{mountain} \\ $$$${let}\:\lambda=\frac{{r}}{{h}} \\ $$$$\gamma=\mathrm{tan}^{−\mathrm{1}} \frac{{r}}{{h}}=\mathrm{tan}^{−\mathrm{1}} \lambda \\ $$$${s}_{{A}} ={PA} \\ $$$${s}_{{B}} ={PB} \\ $$$${s}_{{A}} =\sqrt{{h}^{\mathrm{2}} +{r}^{\mathrm{2}} }={h}\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} } \\ $$$$\frac{{s}_{{B}} }{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\theta\right)}=\frac{{h}}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\theta+\gamma\right)} \\ $$$${s}_{{B}} =\frac{\mathrm{cos}\:\theta\:{h}}{\mathrm{cos}\:\left(\theta−\gamma\right)}=\frac{{h}}{\mathrm{cos}\:\gamma+\mathrm{sin}\:\gamma\:\mathrm{tan}\:\theta} \\ $$$${s}_{{B}} =\frac{{h}\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}{\mathrm{1}+\lambda\mathrm{tan}\:\theta} \\ $$$$ \\ $$$${when}\:{the}\:{surface}\:{of}\:{the}\:{cone}\:{is} \\ $$$${unfolded},\:{the}\:{shortest}\:{road}\:{from} \\ $$$${A}\:{to}\:{B}\:{is}\:{the}\:{straight}\:{line}\:{AB}. \\ $$$$\overset{\frown} {{AA}}'=\mathrm{2}\pi{r} \\ $$$$\varphi=\frac{\mathrm{2}\pi{r}}{{s}_{{A}} }=\frac{\mathrm{2}\pi{r}}{\:\sqrt{{h}^{\mathrm{2}} +{r}^{\mathrm{2}} }}=\frac{\mathrm{2}\pi\lambda}{\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }} \\ $$$$\left({assume}\:\varphi<\pi,\:{i}.{e}.\:\lambda<\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:{or}\:\gamma<\mathrm{30}°\right) \\ $$$$ \\ $$$${length}\:{of}\:{road}\:={L}_{{I}} \\ $$$${L}_{{I}} ={AB}=\sqrt{{s}_{{A}} ^{\mathrm{2}} +{s}_{{B}} ^{\mathrm{2}} −\mathrm{2}{s}_{{A}} {s}_{{B}} \mathrm{cos}\:\varphi} \\ $$$${L}_{{I}} =\sqrt{{h}^{\mathrm{2}} +{r}^{\mathrm{2}} +\frac{{h}^{\mathrm{2}} \left(\mathrm{1}+\lambda^{\mathrm{2}} \right)}{\left(\mathrm{1}+\lambda\mathrm{tan}\:\theta\right)^{\mathrm{2}} }−\frac{\mathrm{2}{h}\sqrt{\left(\mathrm{1}+\lambda^{\mathrm{2}} \right)\left({h}^{\mathrm{2}} +{r}^{\mathrm{2}} \right)}}{\mathrm{1}+\lambda\mathrm{tan}\:\theta}\:\mathrm{cos}\:\frac{\mathrm{2}\pi\lambda}{\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}} \\ $$$$\frac{{L}_{{I}} }{{h}}=\sqrt{\left(\mathrm{1}+\lambda^{\mathrm{2}} \right)\left[\mathrm{1}+\frac{\mathrm{1}}{\left(\mathrm{1}+\lambda\mathrm{tan}\:\theta\right)^{\mathrm{2}} }−\frac{\mathrm{2}}{\mathrm{1}+\lambda\mathrm{tan}\:\theta}\:\mathrm{cos}\:\frac{\mathrm{2}\pi\lambda}{\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}\right]} \\ $$$$ \\ $$$${example}: \\ $$$$\lambda=\frac{\mathrm{1}}{\mathrm{3}},\:\theta=\mathrm{45}° \\ $$$$\frac{{L}_{{I}} }{{h}}=\frac{\mathrm{5}}{\mathrm{12}}\sqrt{\mathrm{10}\left(\mathrm{1}−\frac{\mathrm{24}}{\mathrm{25}}\:\mathrm{cos}\:\frac{\sqrt{\mathrm{10}}\pi}{\:\mathrm{5}}\right)}\approx\mathrm{1}.\mathrm{552354} \\ $$$$ \\ $$$${we}\:{see}\:{by}\:{road}\:{I},\:{the}\:{point}\:{B}\:{is}\:{not} \\ $$$${always}\:{the}\:{highest}\:{point}\:{on}\:{the}\:{road}. \\ $$$${the}\:{highest}\:{point}\:{on}\:{the}\:{road}\:{has}\:{the} \\ $$$${closest}\:{distance}\:{to}\:{the}\:{peak}\:{P},\:{this} \\ $$$${is}\:{the}\:{point}\:{M}. \\ $$$$\frac{\mathrm{sin}\:\left(\varphi+\alpha\right)}{\mathrm{sin}\:\alpha}=\frac{{s}_{{A}} }{{s}_{{B}} } \\ $$$$\frac{\mathrm{sin}\:\varphi}{\mathrm{tan}\:\alpha}+\mathrm{cos}\:\varphi=\mathrm{1}+\lambda\mathrm{tan}\:\theta \\ $$$$\mathrm{tan}\:\alpha=\frac{\mathrm{sin}\:\varphi}{\mathrm{1}+\lambda\mathrm{tan}\:\theta−\mathrm{cos}\:\varphi} \\ $$$${s}_{{M}} ={PM}={s}_{{A}} \:\mathrm{sin}\:\alpha \\ $$$$\Rightarrow{s}_{{M}} =\frac{{h}\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }\:\mathrm{sin}\:\varphi}{\:\sqrt{\mathrm{1}+\left(\mathrm{1}+\lambda\mathrm{tan}\:\theta\right)\left(\mathrm{1}+\lambda\mathrm{tan}\:\theta−\mathrm{2cos}\:\varphi\right)}} \\ $$

Commented by MJS_new last updated on 17/Feb/21

just saying, the shortest distance is straight  up the mountain and it′s also a route with  constant slope ;−)

$$\mathrm{just}\:\mathrm{saying},\:\mathrm{the}\:\mathrm{shortest}\:\mathrm{distance}\:\mathrm{is}\:\mathrm{straight} \\ $$$$\mathrm{up}\:\mathrm{the}\:\mathrm{mountain}\:\mathrm{and}\:\mathrm{it}'\mathrm{s}\:\mathrm{also}\:\mathrm{a}\:\mathrm{route}\:\mathrm{with} \\ $$$$\left.\mathrm{constant}\:\mathrm{slope}\:;−\right) \\ $$

Commented by mr W last updated on 17/Feb/21

the roads should be around the  mountain, therefore the direct way  right up from A to B is not valid :(

$${the}\:{roads}\:{should}\:{be}\:{around}\:{the} \\ $$$${mountain},\:{therefore}\:{the}\:{direct}\:{way} \\ $$$${right}\:{up}\:{from}\:{A}\:{to}\:{B}\:{is}\:{not}\:{valid}\::\left(\right. \\ $$

Commented by mr W last updated on 17/Feb/21

Commented by mr W last updated on 19/Feb/21

λ=(r/h)  s_A =(√(h^2 +r^2 ))=h (√(1+λ^2 ))  s_B =((h(√(1+λ^2 )))/(1+λtan θ))  ϕ=((2πλ)/( (√(1+λ^2 ))))  α=tan^(−1) ((sin ϕ)/(1+λtan θ−cos ϕ))  s=PC  (s/(sin α))=(s_A /(sin (α+δ)))  ⇒s=((h(√(1+λ^2 )))/(cos δ+((sin δ)/(tan α))))  (ds/dδ)=((s(sin δ−((cos δ)/(tan α))))/(cos δ+((sin δ)/(tan α))))=−(s/(tan (α+δ)))  φr=δs_A   ⇒φ=((δ(√(1+λ^2 )))/λ)  z=h−s cos γ=h−(s/( (√(1+λ^2 ))))  ρ=s sin γ=((λs)/( (√(1+λ^2 ))))  slope k=(dz/( (√((dρ)^2 +(ρdφ)^2 ))))  k=((−(dz/ds))/( (√(((dρ/ds))^2 +(((ρ×(dφ/dδ))/(ds/dδ)))^2 ))))  k=((1/( (√(1+λ^2 ))))/( (√(((λ/( (√(1+λ^2 )))))^2 +(((((λs)/( (√(1+λ^2 ))))×((√(1+λ^2 ))/λ))/(−(s/(tan (α+δ))))))^2 ))))  ⇒k=(1/( (√(λ^2 +(1+λ^2 )tan^2  (α+δ)))))    we see the maximum slope is at  δ=0, i.e. at point A, or at δ=ϕ, i.e.  at point B.  k_A =(1/( (√(λ^2 +(1+λ^2 )tan^2  (α))))) (uphill)  k_B =(1/( (√(λ^2 +(1+λ^2 )tan^2  (α+ϕ))))) (downhill)    the smallest slope is zero when  δ+α=(π/2)  this is at the point M, the highest  pioint on the road.    example:  λ=(1/3), θ=45°  ϕ=((2πλ)/( (√(1+λ^2 ))))=((2π)/( (√(10))))  tan α=((sin ϕ)/(1+λtan θ−cos ϕ))=((sin ((2π)/( (√(10)))))/((4/3)−cos ((2π)/( (√(10))))))  k_(max) =(3/( (√(1+10(((sin ((2π)/( (√(10)))))/((4/3)−cos ((2π)/( (√(10)))))))^2 ))))=1.544 858

$$\lambda=\frac{{r}}{{h}} \\ $$$${s}_{{A}} =\sqrt{{h}^{\mathrm{2}} +{r}^{\mathrm{2}} }={h}\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} } \\ $$$${s}_{{B}} =\frac{{h}\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}{\mathrm{1}+\lambda\mathrm{tan}\:\theta} \\ $$$$\varphi=\frac{\mathrm{2}\pi\lambda}{\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }} \\ $$$$\alpha=\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{sin}\:\varphi}{\mathrm{1}+\lambda\mathrm{tan}\:\theta−\mathrm{cos}\:\varphi} \\ $$$${s}={PC} \\ $$$$\frac{{s}}{\mathrm{sin}\:\alpha}=\frac{{s}_{{A}} }{\mathrm{sin}\:\left(\alpha+\delta\right)} \\ $$$$\Rightarrow{s}=\frac{{h}\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}{\mathrm{cos}\:\delta+\frac{\mathrm{sin}\:\delta}{\mathrm{tan}\:\alpha}} \\ $$$$\frac{{ds}}{{d}\delta}=\frac{{s}\left(\mathrm{sin}\:\delta−\frac{\mathrm{cos}\:\delta}{\mathrm{tan}\:\alpha}\right)}{\mathrm{cos}\:\delta+\frac{\mathrm{sin}\:\delta}{\mathrm{tan}\:\alpha}}=−\frac{{s}}{\mathrm{tan}\:\left(\alpha+\delta\right)} \\ $$$$\phi{r}=\delta{s}_{{A}} \\ $$$$\Rightarrow\phi=\frac{\delta\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}{\lambda} \\ $$$${z}={h}−{s}\:\mathrm{cos}\:\gamma={h}−\frac{{s}}{\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }} \\ $$$$\rho={s}\:\mathrm{sin}\:\gamma=\frac{\lambda{s}}{\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }} \\ $$$${slope}\:{k}=\frac{{dz}}{\:\sqrt{\left({d}\rho\right)^{\mathrm{2}} +\left(\rho{d}\phi\right)^{\mathrm{2}} }} \\ $$$${k}=\frac{−\frac{{dz}}{{ds}}}{\:\sqrt{\left(\frac{{d}\rho}{{ds}}\right)^{\mathrm{2}} +\left(\frac{\rho×\frac{{d}\phi}{{d}\delta}}{\frac{{ds}}{{d}\delta}}\right)^{\mathrm{2}} }} \\ $$$${k}=\frac{\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}}{\:\sqrt{\left(\frac{\lambda}{\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}\right)^{\mathrm{2}} +\left(\frac{\frac{\lambda{s}}{\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}×\frac{\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}{\lambda}}{−\frac{{s}}{\mathrm{tan}\:\left(\alpha+\delta\right)}}\right)^{\mathrm{2}} }} \\ $$$$\Rightarrow{k}=\frac{\mathrm{1}}{\:\sqrt{\lambda^{\mathrm{2}} +\left(\mathrm{1}+\lambda^{\mathrm{2}} \right)\mathrm{tan}^{\mathrm{2}} \:\left(\alpha+\delta\right)}} \\ $$$$ \\ $$$${we}\:{see}\:{the}\:{maximum}\:{slope}\:{is}\:{at} \\ $$$$\delta=\mathrm{0},\:{i}.{e}.\:{at}\:{point}\:{A},\:{or}\:{at}\:\delta=\varphi,\:{i}.{e}. \\ $$$${at}\:{point}\:{B}. \\ $$$${k}_{{A}} =\frac{\mathrm{1}}{\:\sqrt{\lambda^{\mathrm{2}} +\left(\mathrm{1}+\lambda^{\mathrm{2}} \right)\mathrm{tan}^{\mathrm{2}} \:\left(\alpha\right)}}\:\left({uphill}\right) \\ $$$${k}_{{B}} =\frac{\mathrm{1}}{\:\sqrt{\lambda^{\mathrm{2}} +\left(\mathrm{1}+\lambda^{\mathrm{2}} \right)\mathrm{tan}^{\mathrm{2}} \:\left(\alpha+\varphi\right)}}\:\left({downhill}\right) \\ $$$$ \\ $$$${the}\:{smallest}\:{slope}\:{is}\:{zero}\:{when} \\ $$$$\delta+\alpha=\frac{\pi}{\mathrm{2}} \\ $$$${this}\:{is}\:{at}\:{the}\:{point}\:{M},\:{the}\:{highest} \\ $$$${pioint}\:{on}\:{the}\:{road}. \\ $$$$ \\ $$$${example}: \\ $$$$\lambda=\frac{\mathrm{1}}{\mathrm{3}},\:\theta=\mathrm{45}° \\ $$$$\varphi=\frac{\mathrm{2}\pi\lambda}{\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}=\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{10}}} \\ $$$$\mathrm{tan}\:\alpha=\frac{\mathrm{sin}\:\varphi}{\mathrm{1}+\lambda\mathrm{tan}\:\theta−\mathrm{cos}\:\varphi}=\frac{\mathrm{sin}\:\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{10}}}}{\frac{\mathrm{4}}{\mathrm{3}}−\mathrm{cos}\:\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{10}}}} \\ $$$${k}_{{max}} =\frac{\mathrm{3}}{\:\sqrt{\mathrm{1}+\mathrm{10}\left(\frac{\mathrm{sin}\:\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{10}}}}{\frac{\mathrm{4}}{\mathrm{3}}−\mathrm{cos}\:\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{10}}}}\right)^{\mathrm{2}} }}=\mathrm{1}.\mathrm{544}\:\mathrm{858} \\ $$

Commented by MJS_new last updated on 17/Feb/21

the concept of the shortest distance around  the cone is fuzzy...  (1) if B=P it′s no more “around the cone”  (2) if ϕ=180° it′s straight up over the peak  (3) if ϕ>180° where is it?  (4) let B=A in cases (2) and (3)  this isn′t criticism, I′m just playing around  with it  if B is not 360° away from A it works better  because we could go the other direction...

$$\mathrm{the}\:\mathrm{concept}\:\mathrm{of}\:\mathrm{the}\:\mathrm{shortest}\:\mathrm{distance}\:\mathrm{around} \\ $$$$\mathrm{the}\:\mathrm{cone}\:\mathrm{is}\:\mathrm{fuzzy}... \\ $$$$\left(\mathrm{1}\right)\:\mathrm{if}\:{B}={P}\:\mathrm{it}'\mathrm{s}\:\mathrm{no}\:\mathrm{more}\:``\mathrm{around}\:\mathrm{the}\:\mathrm{cone}'' \\ $$$$\left(\mathrm{2}\right)\:\mathrm{if}\:\varphi=\mathrm{180}°\:\mathrm{it}'\mathrm{s}\:\mathrm{straight}\:\mathrm{up}\:\mathrm{over}\:\mathrm{the}\:\mathrm{peak} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{if}\:\varphi>\mathrm{180}°\:\mathrm{where}\:\mathrm{is}\:\mathrm{it}? \\ $$$$\left(\mathrm{4}\right)\:\mathrm{let}\:{B}={A}\:\mathrm{in}\:\mathrm{cases}\:\left(\mathrm{2}\right)\:\mathrm{and}\:\left(\mathrm{3}\right) \\ $$$$\mathrm{this}\:\mathrm{isn}'\mathrm{t}\:\mathrm{criticism},\:\mathrm{I}'\mathrm{m}\:\mathrm{just}\:\mathrm{playing}\:\mathrm{around} \\ $$$$\mathrm{with}\:\mathrm{it} \\ $$$$\mathrm{if}\:{B}\:\mathrm{is}\:\mathrm{not}\:\mathrm{360}°\:\mathrm{away}\:\mathrm{from}\:{A}\:\mathrm{it}\:\mathrm{works}\:\mathrm{better} \\ $$$$\mathrm{because}\:\mathrm{we}\:\mathrm{could}\:\mathrm{go}\:\mathrm{the}\:\mathrm{other}\:\mathrm{direction}... \\ $$

Commented by mr W last updated on 18/Feb/21

i have added a restriction: h>(√3)r.  actually i′m also playing with it, so  all are allowed to play in their ways,  and you in your way.

$${i}\:{have}\:{added}\:{a}\:{restriction}:\:{h}>\sqrt{\mathrm{3}}{r}. \\ $$$${actually}\:{i}'{m}\:{also}\:{playing}\:{with}\:{it},\:{so} \\ $$$${all}\:{are}\:{allowed}\:{to}\:{play}\:{in}\:{their}\:{ways}, \\ $$$${and}\:{you}\:{in}\:{your}\:{way}. \\ $$

Answered by mr W last updated on 18/Feb/21

Commented by mr W last updated on 18/Feb/21

Commented by mr W last updated on 19/Feb/21

we have got from road I:  tan γ=(r/h)=λ  s_A =h (√(1+λ^2 ))  s_B =((h(√(1+λ^2 )))/(1+λtan θ))  ϕ=((2πλ)/( (√(1+λ^2 ))))  s=PC  φr=δs_A   φ=((δ(√(1+λ^2 )))/λ)  z=C′C=h−s cos γ=h−(s/( (√(1+λ^2 ))))  ρ=OC′=s sin γ=((λs)/( (√(1+λ^2 ))))  slope k=(dz/( (√((dρ)^2 +(ρdφ)^2 ))))  k=((−(dz/ds))/( (√(((dρ/ds))^2 +(((ρ×(dφ/dδ))/(ds/dδ)))^2 ))))  k=((1/( (√(1+λ^2 ))))/( (√(((λ/( (√(1+λ^2 )))))^2 +(((((λs)/( (√(1+λ^2 ))))×((√(1+λ^2 ))/λ))/(ds/dδ)))^2 ))))  k=(1/( (√(λ^2 +(1+λ^2 )((s/(ds/dδ)))^2 ))))  (ds/dδ)=−(s/( (√((1/(1+λ^2 ))((1/( k^2 ))−λ^2 )))))  let ξ=(1/( (√((1/(1+λ^2 ))((1/( k^2 ))−λ^2 )))))  ∫_s_A  ^s (ds/s)=−ξ∫_0 ^δ dδ  ln s−ln s_A =−ξδ  s=s_A e^(−ξδ)   ⇒s=h(√(1+λ^2 ))e^(−ξδ)   s_B =h(√(1+λ^2 ))e^(−ξϕ) =((h(√(1+λ^2 )))/(1+λtan θ))  e^(−ξϕ) =(1/(1+λtan θ))  ξ=((ln (1+λtan θ))/ϕ)  (1/( (√((1/(1+λ^2 ))((1/( k^2 ))−λ^2 )))))=((ln (1+λtan θ))/ϕ)  (1/( (1/( k^2 ))−λ^2 ))=((ln^2  (1+λtan θ))/((1+λ^2 )ϕ^2 ))  (1/k^2 )=λ^2 +(((1+λ^2 )ϕ^2 )/( ln^2  (1+λtan θ)))=λ^2 +((4π^2 λ^2 )/( ln^2  (1+λtan θ)))  ⇒k=(1/( λ(√(1+[((2π)/( ln (1+λtan θ)))]^2 ))))    length of road L_(II)   L_(II) =∫_0 ^ϕ (√(s^2 +((ds/dδ))^2 ))dδ  L_(II) =h(√(1+λ^2 ))∫_0 ^ϕ e^(−ξδ) (√(1+ξ^2 ))dδ  (L_(II) /h)=(((1−e^(−ξϕ) )(√((1+λ^2 )(1+ξ^2 ))))/ξ)  ⇒(L_(II) /h)=(1−(1/(1+λtan θ)))(√(1+λ^2 +[((2πλ)/(ln (1+λtan θ)))]^2 ))  or  L_(II) =((√(1+k^2 ))/k)(s_A −s_B )cos γ  L_(II) =h(√(1+(1/k^2 )))(1−(1/(1+λtan θ)))  ⇒(L_(II) /h)=(1−(1/(1+λtan θ)))(√(1+λ^2 +[((2πλ)/( ln (1+λtan θ)))]^2 ))    example:  λ=(1/3), θ=45°  (L_(II) /h)=(1/(12))(√(10+(((2π)/( ln (4/3))))^2 ))≈1.839 039 058  k=(3/( (√(1+(((2π)/( ln (4/3))))^2 ))))=0.137 214

$${we}\:{have}\:{got}\:{from}\:{road}\:{I}: \\ $$$$\mathrm{tan}\:\gamma=\frac{{r}}{{h}}=\lambda \\ $$$${s}_{{A}} ={h}\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} } \\ $$$${s}_{{B}} =\frac{{h}\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}{\mathrm{1}+\lambda\mathrm{tan}\:\theta} \\ $$$$\varphi=\frac{\mathrm{2}\pi\lambda}{\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }} \\ $$$${s}={PC} \\ $$$$\phi{r}=\delta{s}_{{A}} \\ $$$$\phi=\frac{\delta\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}{\lambda} \\ $$$${z}={C}'{C}={h}−{s}\:\mathrm{cos}\:\gamma={h}−\frac{{s}}{\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }} \\ $$$$\rho={OC}'={s}\:\mathrm{sin}\:\gamma=\frac{\lambda{s}}{\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }} \\ $$$${slope}\:{k}=\frac{{dz}}{\:\sqrt{\left({d}\rho\right)^{\mathrm{2}} +\left(\rho{d}\phi\right)^{\mathrm{2}} }} \\ $$$${k}=\frac{−\frac{{dz}}{{ds}}}{\:\sqrt{\left(\frac{{d}\rho}{{ds}}\right)^{\mathrm{2}} +\left(\frac{\rho×\frac{{d}\phi}{{d}\delta}}{\frac{{ds}}{{d}\delta}}\right)^{\mathrm{2}} }} \\ $$$${k}=\frac{\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}}{\:\sqrt{\left(\frac{\lambda}{\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}\right)^{\mathrm{2}} +\left(\frac{\frac{\lambda{s}}{\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}×\frac{\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}{\lambda}}{\frac{{ds}}{{d}\delta}}\right)^{\mathrm{2}} }} \\ $$$${k}=\frac{\mathrm{1}}{\:\sqrt{\lambda^{\mathrm{2}} +\left(\mathrm{1}+\lambda^{\mathrm{2}} \right)\left(\frac{{s}}{\frac{{ds}}{{d}\delta}}\right)^{\mathrm{2}} }} \\ $$$$\frac{{ds}}{{d}\delta}=−\frac{{s}}{\:\sqrt{\frac{\mathrm{1}}{\mathrm{1}+\lambda^{\mathrm{2}} }\left(\frac{\mathrm{1}}{\:{k}^{\mathrm{2}} }−\lambda^{\mathrm{2}} \right)}} \\ $$$${let}\:\xi=\frac{\mathrm{1}}{\:\sqrt{\frac{\mathrm{1}}{\mathrm{1}+\lambda^{\mathrm{2}} }\left(\frac{\mathrm{1}}{\:{k}^{\mathrm{2}} }−\lambda^{\mathrm{2}} \right)}} \\ $$$$\int_{{s}_{{A}} } ^{{s}} \frac{{ds}}{{s}}=−\xi\int_{\mathrm{0}} ^{\delta} {d}\delta \\ $$$$\mathrm{ln}\:{s}−\mathrm{ln}\:{s}_{{A}} =−\xi\delta \\ $$$${s}={s}_{{A}} {e}^{−\xi\delta} \\ $$$$\Rightarrow{s}={h}\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }{e}^{−\xi\delta} \\ $$$${s}_{{B}} ={h}\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }{e}^{−\xi\varphi} =\frac{{h}\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}{\mathrm{1}+\lambda\mathrm{tan}\:\theta} \\ $$$${e}^{−\xi\varphi} =\frac{\mathrm{1}}{\mathrm{1}+\lambda\mathrm{tan}\:\theta} \\ $$$$\xi=\frac{\mathrm{ln}\:\left(\mathrm{1}+\lambda\mathrm{tan}\:\theta\right)}{\varphi} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\frac{\mathrm{1}}{\mathrm{1}+\lambda^{\mathrm{2}} }\left(\frac{\mathrm{1}}{\:{k}^{\mathrm{2}} }−\lambda^{\mathrm{2}} \right)}}=\frac{\mathrm{ln}\:\left(\mathrm{1}+\lambda\mathrm{tan}\:\theta\right)}{\varphi} \\ $$$$\frac{\mathrm{1}}{\:\frac{\mathrm{1}}{\:{k}^{\mathrm{2}} }−\lambda^{\mathrm{2}} }=\frac{\mathrm{ln}^{\mathrm{2}} \:\left(\mathrm{1}+\lambda\mathrm{tan}\:\theta\right)}{\left(\mathrm{1}+\lambda^{\mathrm{2}} \right)\varphi^{\mathrm{2}} } \\ $$$$\frac{\mathrm{1}}{{k}^{\mathrm{2}} }=\lambda^{\mathrm{2}} +\frac{\left(\mathrm{1}+\lambda^{\mathrm{2}} \right)\varphi^{\mathrm{2}} }{\:\mathrm{ln}^{\mathrm{2}} \:\left(\mathrm{1}+\lambda\mathrm{tan}\:\theta\right)}=\lambda^{\mathrm{2}} +\frac{\mathrm{4}\pi^{\mathrm{2}} \lambda^{\mathrm{2}} }{\:\mathrm{ln}^{\mathrm{2}} \:\left(\mathrm{1}+\lambda\mathrm{tan}\:\theta\right)} \\ $$$$\Rightarrow{k}=\frac{\mathrm{1}}{\:\lambda\sqrt{\mathrm{1}+\left[\frac{\mathrm{2}\pi}{\:\mathrm{ln}\:\left(\mathrm{1}+\lambda\mathrm{tan}\:\theta\right)}\right]^{\mathrm{2}} }} \\ $$$$ \\ $$$${length}\:{of}\:{road}\:{L}_{{II}} \\ $$$${L}_{{II}} =\int_{\mathrm{0}} ^{\varphi} \sqrt{{s}^{\mathrm{2}} +\left(\frac{{ds}}{{d}\delta}\right)^{\mathrm{2}} }{d}\delta \\ $$$${L}_{{II}} ={h}\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }\int_{\mathrm{0}} ^{\varphi} {e}^{−\xi\delta} \sqrt{\mathrm{1}+\xi^{\mathrm{2}} }{d}\delta \\ $$$$\frac{{L}_{{II}} }{{h}}=\frac{\left(\mathrm{1}−{e}^{−\xi\varphi} \right)\sqrt{\left(\mathrm{1}+\lambda^{\mathrm{2}} \right)\left(\mathrm{1}+\xi^{\mathrm{2}} \right)}}{\xi} \\ $$$$\Rightarrow\frac{{L}_{{II}} }{{h}}=\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+\lambda\mathrm{tan}\:\theta}\right)\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} +\left[\frac{\mathrm{2}\pi\lambda}{\mathrm{ln}\:\left(\mathrm{1}+\lambda\mathrm{tan}\:\theta\right)}\right]^{\mathrm{2}} } \\ $$$${or} \\ $$$${L}_{{II}} =\frac{\sqrt{\mathrm{1}+{k}^{\mathrm{2}} }}{{k}}\left({s}_{{A}} −{s}_{{B}} \right)\mathrm{cos}\:\gamma \\ $$$${L}_{{II}} ={h}\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{k}^{\mathrm{2}} }}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+\lambda\mathrm{tan}\:\theta}\right) \\ $$$$\Rightarrow\frac{{L}_{{II}} }{{h}}=\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+\lambda\mathrm{tan}\:\theta}\right)\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} +\left[\frac{\mathrm{2}\pi\lambda}{\:\mathrm{ln}\:\left(\mathrm{1}+\lambda\mathrm{tan}\:\theta\right)}\right]^{\mathrm{2}} } \\ $$$$ \\ $$$${example}: \\ $$$$\lambda=\frac{\mathrm{1}}{\mathrm{3}},\:\theta=\mathrm{45}° \\ $$$$\frac{{L}_{{II}} }{{h}}=\frac{\mathrm{1}}{\mathrm{12}}\sqrt{\mathrm{10}+\left(\frac{\mathrm{2}\pi}{\:\mathrm{ln}\:\frac{\mathrm{4}}{\mathrm{3}}}\right)^{\mathrm{2}} }\approx\mathrm{1}.\mathrm{839}\:\mathrm{039}\:\mathrm{058} \\ $$$${k}=\frac{\mathrm{3}}{\:\sqrt{\mathrm{1}+\left(\frac{\mathrm{2}\pi}{\:\mathrm{ln}\:\frac{\mathrm{4}}{\mathrm{3}}}\right)^{\mathrm{2}} }}=\mathrm{0}.\mathrm{137}\:\mathrm{214} \\ $$

Commented by mr W last updated on 18/Feb/21

Commented by mr W last updated on 18/Feb/21

Commented by mr W last updated on 18/Feb/21

we see that both routes don′t cross in  the middle.

$${we}\:{see}\:{that}\:{both}\:{routes}\:{don}'{t}\:{cross}\:{in} \\ $$$${the}\:{middle}. \\ $$

Commented by otchereabdullai@gmail.com last updated on 23/Feb/21

the supper prof!

$$\mathrm{the}\:\mathrm{supper}\:\mathrm{prof}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com