Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 132928 by metamorfose last updated on 17/Feb/21

Σ_(k=1) ^(+∞) (−1)^k ln(1+(1/k))

$$\underset{{k}=\mathrm{1}} {\overset{+\infty} {\sum}}\left(−\mathrm{1}\right)^{{k}} {ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{k}}\right) \\ $$

Commented by Olaf last updated on 17/Feb/21

sorry sir, I deleted my answer.  it was wrong.

$${sorry}\:{sir},\:{I}\:{deleted}\:{my}\:{answer}. \\ $$$${it}\:{was}\:{wrong}. \\ $$

Answered by mnjuly1970 last updated on 17/Feb/21

  S=Σ_(k=1) ^n (−1)^k ∫_0 ^( 1) (dx/(x+k))   =∫_0 ^( 1) Σ_(k=1) ^∞ (−1)^k (1/(x+k))dx   =_(convergent) ^(conditional) (1/2)∫_0 ^( 1) Σ(−1)^k (1/((x/2)+(k/2)))dx  =(1/2)∫_0 ^( 1) {Σ_(k=) ^∞ (1/((x/2)+k)) −Σ_(k=1) ^∞ (1/((x/2)−(1/2)+k))}dx   =(1/2)∫_0 ^( 1) {−γ+Σ(1/k)−(1/((x/2)−(1/2)+k))−(−γ+Σ(1/k)−(1/((x/2)+k)))}dx  =(1/2)∫_0 ^( 1) {𝛙((x/2)+(1/2))−𝛙((x/2)+1)}dx  note: 𝛙(z+1)=−𝛄+Σ_(k=1) ^∞ ((1/k)−(1/(k+z)))  ∴ S=(1/2)(2ln(𝚪((x/2)+(1/2)))−2ln(𝚪((x/2)+1))_0 ^1   =−ln𝚪((3/2))−ln(𝚪((1/2)))=  =−ln((1/2)(√π) .(√π) )=ln((2/π))...✓✓✓  =∫_0 ^( 1) ((1−x)/((1+x)ln(x)))dx     .m.n.july.1970.

$$\:\:{S}=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(−\mathrm{1}\right)^{{k}} \int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{dx}}{{x}+{k}} \\ $$$$\:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{k}} \frac{\mathrm{1}}{{x}+{k}}{dx} \\ $$$$\:\underset{{convergent}} {\overset{{conditional}} {=}}\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \Sigma\left(−\mathrm{1}\right)^{{k}} \frac{\mathrm{1}}{\frac{{x}}{\mathrm{2}}+\frac{{k}}{\mathrm{2}}}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \left\{\underset{{k}=} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\frac{{x}}{\mathrm{2}}+{k}}\:−\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\frac{{x}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}+{k}}\right\}{dx} \\ $$$$\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \left\{−\gamma+\Sigma\frac{\mathrm{1}}{{k}}−\frac{\mathrm{1}}{\frac{{x}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}+{k}}−\left(−\gamma+\Sigma\frac{\mathrm{1}}{{k}}−\frac{\mathrm{1}}{\frac{{x}}{\mathrm{2}}+{k}}\right)\right\}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \left\{\boldsymbol{\psi}\left(\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)−\boldsymbol{\psi}\left(\frac{{x}}{\mathrm{2}}+\mathrm{1}\right)\right\}{dx} \\ $$$${note}:\:\boldsymbol{\psi}\left({z}+\mathrm{1}\right)=−\boldsymbol{\gamma}+\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{k}}−\frac{\mathrm{1}}{{k}+{z}}\right) \\ $$$$\therefore\:{S}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}{ln}\left(\boldsymbol{\Gamma}\left(\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)\right)−\mathrm{2}{ln}\left(\boldsymbol{\Gamma}\left(\frac{{x}}{\mathrm{2}}+\mathrm{1}\right)\right)_{\mathrm{0}} ^{\mathrm{1}} \right. \\ $$$$=−{ln}\boldsymbol{\Gamma}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)−{ln}\left(\boldsymbol{\Gamma}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right)= \\ $$$$=−{ln}\left(\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\pi}\:.\sqrt{\pi}\:\right)={ln}\left(\frac{\mathrm{2}}{\pi}\right)...\checkmark\checkmark\checkmark \\ $$$$=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}−{x}}{\left(\mathrm{1}+{x}\right){ln}\left({x}\right)}{dx}\:\:\:\:\:.{m}.{n}.{july}.\mathrm{1970}. \\ $$$$\:\: \\ $$

Commented by metamorfose last updated on 17/Feb/21

thanks , it′s an intresting solution

$${thanks}\:,\:{it}'{s}\:{an}\:{intresting}\:{solution} \\ $$

Commented by mnjuly1970 last updated on 17/Feb/21

 grateful sir .....

$$\:{grateful}\:{sir}\:..... \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com