Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 133688 by mnjuly1970 last updated on 23/Feb/21

                 #   calculus #         find:          𝛗=∫_0 ^( (π/2)) (dx/(sin^(10) (x)+cos^(10) (x))) =???

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:#\:\:\:{calculus}\:# \\ $$$$\:\:\:\:\:\:\:{find}:\: \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{dx}}{{sin}^{\mathrm{10}} \left({x}\right)+{cos}^{\mathrm{10}} \left({x}\right)}\:=??? \\ $$$$ \\ $$

Answered by Ar Brandon last updated on 23/Feb/21

φ=∫_0 ^(π/2) (dx/(sin^(10) x+cos^(10) x))=∫_0 ^(π/2) ((sec^(10) x)/(tan^(10) x+1))dx=∫_0 ^∞ (((t^2 +1)^4 )/(t^(10) +1))dt     =∫_0 ^∞ {((t^8 +4t^6 +6t^4 +4t^2 +1)/(t^(10) +1))}dt , u=t^(10)  ⇒du=10t^9 dt=10u^(9/(10)) dt  φ=(1/(10))∫_0 ^∞ (u^(−(1/(10))) /(u+1))du+(2/5)∫_0 ^∞ (u^(−(3/(10))) /(u+1))du+(3/5)∫_0 ^∞ (u^(−(5/(10))) /(u+1))du+(2/5)∫_0 ^∞ (u^(−(7/(10))) /(u+1))du+(1/(10))∫_0 ^∞ (u^(−(9/(10))) /(u+1))du     =(1/(10))β((9/(10)),(1/(10)))+(2/5)β((7/(10)),(3/(10)))+(3/5)β((1/2),(1/2))+(2/5)β((3/(10)),(7/(10)))+(1/(10))β((1/(10)),(9/(10)))     =(π/(5sin((π/(10)))))+((4π)/(5sin(((3π)/(10)))))+((3π)/(5sin((π/2))))

$$\phi=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{d}{x}}{\mathrm{sin}^{\mathrm{10}} {x}+\mathrm{cos}^{\mathrm{10}} {x}}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sec}^{\mathrm{10}} {x}}{\mathrm{tan}^{\mathrm{10}} {x}+\mathrm{1}}\mathrm{d}{x}=\int_{\mathrm{0}} ^{\infty} \frac{\left(\mathrm{t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{4}} }{\mathrm{t}^{\mathrm{10}} +\mathrm{1}}\mathrm{dt} \\ $$$$\:\:\:=\int_{\mathrm{0}} ^{\infty} \left\{\frac{\mathrm{t}^{\mathrm{8}} +\mathrm{4t}^{\mathrm{6}} +\mathrm{6t}^{\mathrm{4}} +\mathrm{4t}^{\mathrm{2}} +\mathrm{1}}{\mathrm{t}^{\mathrm{10}} +\mathrm{1}}\right\}\mathrm{dt}\:,\:\mathrm{u}=\mathrm{t}^{\mathrm{10}} \:\Rightarrow\mathrm{du}=\mathrm{10t}^{\mathrm{9}} \mathrm{dt}=\mathrm{10u}^{\frac{\mathrm{9}}{\mathrm{10}}} \mathrm{dt} \\ $$$$\phi=\frac{\mathrm{1}}{\mathrm{10}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{u}^{−\frac{\mathrm{1}}{\mathrm{10}}} }{\mathrm{u}+\mathrm{1}}\mathrm{du}+\frac{\mathrm{2}}{\mathrm{5}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{u}^{−\frac{\mathrm{3}}{\mathrm{10}}} }{\mathrm{u}+\mathrm{1}}\mathrm{du}+\frac{\mathrm{3}}{\mathrm{5}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{u}^{−\frac{\mathrm{5}}{\mathrm{10}}} }{\mathrm{u}+\mathrm{1}}\mathrm{du}+\frac{\mathrm{2}}{\mathrm{5}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{u}^{−\frac{\mathrm{7}}{\mathrm{10}}} }{\mathrm{u}+\mathrm{1}}\mathrm{du}+\frac{\mathrm{1}}{\mathrm{10}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{u}^{−\frac{\mathrm{9}}{\mathrm{10}}} }{\mathrm{u}+\mathrm{1}}\mathrm{du} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{10}}\beta\left(\frac{\mathrm{9}}{\mathrm{10}},\frac{\mathrm{1}}{\mathrm{10}}\right)+\frac{\mathrm{2}}{\mathrm{5}}\beta\left(\frac{\mathrm{7}}{\mathrm{10}},\frac{\mathrm{3}}{\mathrm{10}}\right)+\frac{\mathrm{3}}{\mathrm{5}}\beta\left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}}\right)+\frac{\mathrm{2}}{\mathrm{5}}\beta\left(\frac{\mathrm{3}}{\mathrm{10}},\frac{\mathrm{7}}{\mathrm{10}}\right)+\frac{\mathrm{1}}{\mathrm{10}}\beta\left(\frac{\mathrm{1}}{\mathrm{10}},\frac{\mathrm{9}}{\mathrm{10}}\right) \\ $$$$\:\:\:=\frac{\pi}{\mathrm{5sin}\left(\frac{\pi}{\mathrm{10}}\right)}+\frac{\mathrm{4}\pi}{\mathrm{5sin}\left(\frac{\mathrm{3}\pi}{\mathrm{10}}\right)}+\frac{\mathrm{3}\pi}{\mathrm{5sin}\left(\frac{\pi}{\mathrm{2}}\right)} \\ $$

Commented by Dwaipayan Shikari last updated on 23/Feb/21

(π/5)((4/( (√5)−1))+((16)/( (√5)+1))+3)=(π/5)((√5)+1+4(√5)−4+3)  =(√5)π

$$\frac{\pi}{\mathrm{5}}\left(\frac{\mathrm{4}}{\:\sqrt{\mathrm{5}}−\mathrm{1}}+\frac{\mathrm{16}}{\:\sqrt{\mathrm{5}}+\mathrm{1}}+\mathrm{3}\right)=\frac{\pi}{\mathrm{5}}\left(\sqrt{\mathrm{5}}+\mathrm{1}+\mathrm{4}\sqrt{\mathrm{5}}−\mathrm{4}+\mathrm{3}\right) \\ $$$$=\sqrt{\mathrm{5}}\pi \\ $$

Commented by mnjuly1970 last updated on 23/Feb/21

thanks  alot  master brandon    nice   very  nice solution...

$${thanks}\:\:{alot}\:\:{master}\:{brandon} \\ $$$$\:\:{nice}\:\:\:{very}\:\:{nice}\:{solution}... \\ $$

Commented by Ar Brandon last updated on 23/Feb/21

My pleasure Sir

Answered by Ajetunmobi last updated on 23/Feb/21

i have did this on facebook

$$\boldsymbol{\mathrm{i}}\:\boldsymbol{\mathrm{have}}\:\boldsymbol{\mathrm{did}}\:\boldsymbol{\mathrm{this}}\:\boldsymbol{\mathrm{on}}\:\boldsymbol{\mathrm{facebook}} \\ $$

Answered by Ajetunmobi last updated on 23/Feb/21

Commented by Ar Brandon last updated on 23/Feb/21

Ambiguity on your name Sir. Ajetunmobi or Ajeutunmobi ?��

Commented by Ajetunmobi last updated on 24/Feb/21

it is Ajetunmobi Abdulqoyyum  thank u that was a mistake

$${it}\:{is}\:\boldsymbol{\mathrm{Ajetunmobi}}\:\boldsymbol{\mathrm{Abdulqoyyum}} \\ $$$$\boldsymbol{\mathrm{thank}}\:\boldsymbol{\mathrm{u}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{was}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{mistake}} \\ $$

Answered by Ajetunmobi last updated on 23/Feb/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com