Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 134215 by Abdoulaye last updated on 01/Mar/21

Σ_(k=0) ^n k^2 3^k =??

$$\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{k}^{\mathrm{2}} \mathrm{3}^{{k}} =?? \\ $$

Answered by mr W last updated on 01/Mar/21

generally:  S=Σ_(k=0) ^n k^2 p^k   pS=Σ_(k=0) ^n (k+1−1)^2 p^(k+1)   pS=Σ_(k=0) ^n [(k+1)^2 −2k−1]p^(k+1)   pS=Σ_(k=0) ^n (k+1)^2 p^(k+1) −2Σ_(k=0) ^n kp^(k+1) −Σ_(k=0) ^n p^(k+1)   pS=(n+1)^2 p^(n+1) +S−2pΣ_(k=0) ^n kp^k −Σ_(k=0) ^n p^(k+1)   (p−1)S=(n+1)^2 p^(n+1) −2pΣ_(k=0) ^n kp^k −((p(p^(n+1) −1))/(p−1))  ⇒S=(1/(p−1))(n+1)^2 p^(n+1) −((2p)/(p−1))Σ_(k=0) ^n kp^k −((p(p^(n+1) −1))/((p−1)^2 ))  with Σ_(k=0) ^n kp^k  you have already got.

$${generally}: \\ $$$${S}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{k}^{\mathrm{2}} {p}^{{k}} \\ $$$${pS}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\left({k}+\mathrm{1}−\mathrm{1}\right)^{\mathrm{2}} {p}^{{k}+\mathrm{1}} \\ $$$${pS}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\left[\left({k}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{2}{k}−\mathrm{1}\right]{p}^{{k}+\mathrm{1}} \\ $$$${pS}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\left({k}+\mathrm{1}\right)^{\mathrm{2}} {p}^{{k}+\mathrm{1}} −\mathrm{2}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{kp}^{{k}+\mathrm{1}} −\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{p}^{{k}+\mathrm{1}} \\ $$$${pS}=\left({n}+\mathrm{1}\right)^{\mathrm{2}} {p}^{{n}+\mathrm{1}} +{S}−\mathrm{2}{p}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{kp}^{{k}} −\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{p}^{{k}+\mathrm{1}} \\ $$$$\left({p}−\mathrm{1}\right){S}=\left({n}+\mathrm{1}\right)^{\mathrm{2}} {p}^{{n}+\mathrm{1}} −\mathrm{2}{p}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{kp}^{{k}} −\frac{{p}\left({p}^{{n}+\mathrm{1}} −\mathrm{1}\right)}{{p}−\mathrm{1}} \\ $$$$\Rightarrow{S}=\frac{\mathrm{1}}{{p}−\mathrm{1}}\left({n}+\mathrm{1}\right)^{\mathrm{2}} {p}^{{n}+\mathrm{1}} −\frac{\mathrm{2}{p}}{{p}−\mathrm{1}}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{kp}^{{k}} −\frac{{p}\left({p}^{{n}+\mathrm{1}} −\mathrm{1}\right)}{\left({p}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${with}\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{kp}^{{k}} \:{you}\:{have}\:{already}\:{got}. \\ $$

Commented by mr W last updated on 01/Mar/21

this is a general way, you should be  able to get  Σ_(k=0) ^n k^3 4^k =???  Σ_(k=0) ^n k^4 5^k =????  etc.

$${this}\:{is}\:{a}\:{general}\:{way},\:{you}\:{should}\:{be} \\ $$$${able}\:{to}\:{get} \\ $$$$\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{k}^{\mathrm{3}} \mathrm{4}^{{k}} =??? \\ $$$$\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{k}^{\mathrm{4}} \mathrm{5}^{{k}} =???? \\ $$$${etc}. \\ $$

Answered by mindispower last updated on 01/Mar/21

=Σ_(k≤n) k^2 e^(kln(3))   Σ_(k≤n) e^(kx) =((1−e^((n+1)x) )/(1−e^x ))=f(x)  f′′(x)=Σ_(k=0) ^(k=n) k^2 e^(kx) =(d/dx)(((−1−ne^((n+1)x) +(n+2)e^((n+1)x) )/((1−e^x )^2 )))  than x=ln3

$$=\underset{{k}\leqslant{n}} {\sum}{k}^{\mathrm{2}} {e}^{{kln}\left(\mathrm{3}\right)} \\ $$$$\underset{{k}\leqslant{n}} {\sum}{e}^{{kx}} =\frac{\mathrm{1}−{e}^{\left({n}+\mathrm{1}\right){x}} }{\mathrm{1}−{e}^{{x}} }={f}\left({x}\right) \\ $$$${f}''\left({x}\right)=\underset{{k}=\mathrm{0}} {\overset{{k}={n}} {\sum}}{k}^{\mathrm{2}} {e}^{{kx}} =\frac{{d}}{{dx}}\left(\frac{−\mathrm{1}−{ne}^{\left({n}+\mathrm{1}\right){x}} +\left({n}+\mathrm{2}\right){e}^{\left({n}+\mathrm{1}\right){x}} }{\left(\mathrm{1}−{e}^{{x}} \right)^{\mathrm{2}} }\right) \\ $$$${than}\:{x}={ln}\mathrm{3} \\ $$$$ \\ $$

Commented by Abdoulaye last updated on 01/Mar/21

thank you so much sir

$${thank}\:{you}\:{so}\:{much}\:{sir} \\ $$

Answered by Ñï= last updated on 01/Mar/21

Σ_(k=0) ^n k^2 3^k   =[(xD)^2 Σ_(k=0) ^n x^k ]_(x=3)   =[(xD)^2 ((x^(n+1) −1)/(x−1))]_(x=3)   =[xD((nx^(n+2) −(n+1)x^(n+1) +x)/((x−1)^2 ))]_(x=3)   xD=x(d/dx)  ........

$$\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{k}^{\mathrm{2}} \mathrm{3}^{{k}} \\ $$$$=\left[\left({xD}\right)^{\mathrm{2}} \underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{x}^{{k}} \right]_{{x}=\mathrm{3}} \\ $$$$=\left[\left({xD}\right)^{\mathrm{2}} \frac{{x}^{{n}+\mathrm{1}} −\mathrm{1}}{{x}−\mathrm{1}}\right]_{{x}=\mathrm{3}} \\ $$$$=\left[{xD}\frac{{nx}^{{n}+\mathrm{2}} −\left({n}+\mathrm{1}\right){x}^{{n}+\mathrm{1}} +{x}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\right]_{{x}=\mathrm{3}} \\ $$$${xD}={x}\frac{{d}}{{dx}} \\ $$$$........ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com