Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 1343 by Rasheed Soomro last updated on 24/Jul/15

3^(log 3x+4) =4^(log 4x+3)

$$\mathrm{3}^{{log}\:\mathrm{3}{x}+\mathrm{4}} =\mathrm{4}^{{log}\:\mathrm{4}{x}+\mathrm{3}} \\ $$

Answered by 112358 last updated on 24/Jul/15

Taking logs to base e on both sides  ⇒(log3x+4)ln3=(log4x+3)ln4  (logx+log3+4)ln3=(logx+log4+3)ln4  let p=logx   ∴ pln3+(log3+4)ln3=pln4+(log4+3)ln4  p(ln3−ln4)=(log4+3)ln4−(log3+4)ln3  p=(((log4+3)ln4−(log3+4)ln3)/(ln(3/4)))  Since p=logx  ⇒ logx=(((log4+3)ln4−(log3+4)ln3)/(ln(3/4)))  ∴ x=10^(((log4+3)ln4−(log3+4)ln3)/(ln(3/4)))   x≈0.549111367  Alternatively  Plotting the graph of   y=3^(log3x+4) −4^(log4x+3)  and reading off  its real root gives an approximate  solution for x satisfying the given  equation. If reading off does not  yield an accurate result other   numerical methods like Newton−  Raphson′s iterative formular,  linear interpolation or interval  bisection can give better estimations  if we define ∃x[0,1]∣y=0 .

$${Taking}\:{logs}\:{to}\:{base}\:{e}\:{on}\:{both}\:{sides} \\ $$$$\Rightarrow\left({log}\mathrm{3}{x}+\mathrm{4}\right){ln}\mathrm{3}=\left({log}\mathrm{4}{x}+\mathrm{3}\right){ln}\mathrm{4} \\ $$$$\left({logx}+{log}\mathrm{3}+\mathrm{4}\right){ln}\mathrm{3}=\left({logx}+{log}\mathrm{4}+\mathrm{3}\right){ln}\mathrm{4} \\ $$$${let}\:{p}={logx}\: \\ $$$$\therefore\:{pln}\mathrm{3}+\left({log}\mathrm{3}+\mathrm{4}\right){ln}\mathrm{3}={pln}\mathrm{4}+\left({log}\mathrm{4}+\mathrm{3}\right){ln}\mathrm{4} \\ $$$${p}\left({ln}\mathrm{3}−{ln}\mathrm{4}\right)=\left({log}\mathrm{4}+\mathrm{3}\right){ln}\mathrm{4}−\left({log}\mathrm{3}+\mathrm{4}\right){ln}\mathrm{3} \\ $$$${p}=\frac{\left({log}\mathrm{4}+\mathrm{3}\right){ln}\mathrm{4}−\left({log}\mathrm{3}+\mathrm{4}\right){ln}\mathrm{3}}{{ln}\left(\mathrm{3}/\mathrm{4}\right)} \\ $$$${Since}\:{p}={logx} \\ $$$$\Rightarrow\:{logx}=\frac{\left({log}\mathrm{4}+\mathrm{3}\right){ln}\mathrm{4}−\left({log}\mathrm{3}+\mathrm{4}\right){ln}\mathrm{3}}{{ln}\left(\mathrm{3}/\mathrm{4}\right)} \\ $$$$\therefore\:{x}=\mathrm{10}^{\frac{\left({log}\mathrm{4}+\mathrm{3}\right){ln}\mathrm{4}−\left({log}\mathrm{3}+\mathrm{4}\right){ln}\mathrm{3}}{{ln}\left(\mathrm{3}/\mathrm{4}\right)}} \\ $$$${x}\approx\mathrm{0}.\mathrm{549111367} \\ $$$${Alternatively} \\ $$$${Plotting}\:{the}\:{graph}\:{of}\: \\ $$$${y}=\mathrm{3}^{{log}\mathrm{3}{x}+\mathrm{4}} −\mathrm{4}^{{log}\mathrm{4}{x}+\mathrm{3}} \:{and}\:{reading}\:{off} \\ $$$${its}\:{real}\:{root}\:{gives}\:{an}\:{approximate} \\ $$$${solution}\:{for}\:{x}\:{satisfying}\:{the}\:{given} \\ $$$${equation}.\:{If}\:{reading}\:{off}\:{does}\:{not} \\ $$$${yield}\:{an}\:{accurate}\:{result}\:{other}\: \\ $$$${numerical}\:{methods}\:{like}\:{Newton}− \\ $$$${Raphson}'{s}\:{iterative}\:{formular}, \\ $$$${linear}\:{interpolation}\:{or}\:{interval} \\ $$$${bisection}\:{can}\:{give}\:{better}\:{estimations} \\ $$$${if}\:{we}\:{define}\:\exists{x}\left[\mathrm{0},\mathrm{1}\right]\mid{y}=\mathrm{0}\:. \\ $$

Commented by Rasheed Ahmad last updated on 24/Jul/15

Good work!

$${Good}\:{work}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com