Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 136476 by Ar Brandon last updated on 22/Mar/21

(a) Let                                 I(α)=∫_0 ^∞ e^(−(x−(α/x))^2 ) dx  Show that it is legitimate to take the derivative of I(α) and also I′(α)=  0. Then show that                                                I(α)=((√π)/2).  (b) Use (a) to prove                                         ∫_0 ^∞ e^(−(x^2 +α^2 x^(−2) )) dx=((√π)/2)e^(−2α) .

$$\left(\mathrm{a}\right)\:\mathrm{Let}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{I}\left(\alpha\right)=\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\left(\mathrm{x}−\frac{\alpha}{\mathrm{x}}\right)^{\mathrm{2}} } \mathrm{dx} \\ $$$$\mathrm{Show}\:\mathrm{that}\:\mathrm{it}\:\mathrm{is}\:\mathrm{legitimate}\:\mathrm{to}\:\mathrm{take}\:\mathrm{the}\:\mathrm{derivative}\:\mathrm{of}\:\mathrm{I}\left(\alpha\right)\:\mathrm{and}\:\mathrm{also}\:\mathrm{I}'\left(\alpha\right)= \\ $$$$\mathrm{0}.\:\mathrm{Then}\:\mathrm{show}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{I}\left(\alpha\right)=\frac{\sqrt{\pi}}{\mathrm{2}}. \\ $$$$\left(\mathrm{b}\right)\:\mathrm{Use}\:\left(\mathrm{a}\right)\:\mathrm{to}\:\mathrm{prove} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\left(\mathrm{x}^{\mathrm{2}} +\alpha^{\mathrm{2}} \mathrm{x}^{−\mathrm{2}} \right)} \mathrm{dx}=\frac{\sqrt{\pi}}{\mathrm{2}}\mathrm{e}^{−\mathrm{2}\alpha} . \\ $$$$ \\ $$

Answered by Dwaipayan Shikari last updated on 22/Mar/21

I(α)=∫_0 ^∞ e^(−x^2 −(α^2 /x^2 )) dx  I′(α)=−2∫_0 ^∞ (α/x^2 )e^(−x^2 −(α^2 /x^2 )) dx                    (α/x)=u⇒((−α)/x^2 )=(du/dx)  I′(α)=−2∫_0 ^∞ e^(−(α^2 /u^2 )−u^2 ) du⇒I′(α)=−2I(α)  I(α)=Ce^(−2α)   I(0)=C=∫_0 ^∞ e^(−x^2 ) dx=((√π)/2)  I(α)=((√π)/2)e^(−2α)

$${I}\left(\alpha\right)=\int_{\mathrm{0}} ^{\infty} {e}^{−{x}^{\mathrm{2}} −\frac{\alpha^{\mathrm{2}} }{{x}^{\mathrm{2}} }} {dx} \\ $$$${I}'\left(\alpha\right)=−\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{\alpha}{{x}^{\mathrm{2}} }{e}^{−{x}^{\mathrm{2}} −\frac{\alpha^{\mathrm{2}} }{{x}^{\mathrm{2}} }} {dx}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\alpha}{{x}}={u}\Rightarrow\frac{−\alpha}{{x}^{\mathrm{2}} }=\frac{{du}}{{dx}} \\ $$$${I}'\left(\alpha\right)=−\mathrm{2}\int_{\mathrm{0}} ^{\infty} {e}^{−\frac{\alpha^{\mathrm{2}} }{{u}^{\mathrm{2}} }−{u}^{\mathrm{2}} } {du}\Rightarrow{I}'\left(\alpha\right)=−\mathrm{2}{I}\left(\alpha\right) \\ $$$${I}\left(\alpha\right)={Ce}^{−\mathrm{2}\alpha} \\ $$$${I}\left(\mathrm{0}\right)={C}=\int_{\mathrm{0}} ^{\infty} {e}^{−{x}^{\mathrm{2}} } {dx}=\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$$${I}\left(\alpha\right)=\frac{\sqrt{\pi}}{\mathrm{2}}{e}^{−\mathrm{2}\alpha} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com