Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 137970 by Dwaipayan Shikari last updated on 08/Apr/21

Prove that   β–½^2 𝛗=βˆ’4𝛑Gρ    Ο†=Potential of Gravitational field  ρ=Density   G=Universal Gravitational Constant

$${Prove}\:{that}\: \\ $$$$\bigtriangledown^{\mathrm{2}} \boldsymbol{\phi}=βˆ’\mathrm{4}\boldsymbol{\pi{G}}\rho\:\: \\ $$$$\phi={Potential}\:{of}\:{Gravitational}\:{field} \\ $$$$\rho={Density}\:\:\:\boldsymbol{{G}}={Universal}\:{Gravitational}\:{Constant} \\ $$

Answered by ajfour last updated on 08/Apr/21

E_x =((βˆ‚Ο†/βˆ‚x))_x   E_(x+dx) =((βˆ‚Ο†/βˆ‚x))_(x+dx)   from Gaussβ€² law for gravitation  βˆ’4Ο€Gm=Ξ£(E_(x+dx) βˆ’E_x )dydz  βˆ’4Ο€Gρ=Ξ£(((E_(x+dx) βˆ’E_x )/dx))  βˆ’4Ο€Gρ=Ξ£((βˆ‚E_x /βˆ‚x^2 ))  βˆ’4Ο€Gρ=Ξ£(βˆ‚^2 Ο†/βˆ‚x^2 ) =β–½^2 Ο†  β‡’  β–½^2 Ο†=βˆ’4Ο€Gρ  β– 

$${E}_{{x}} =\left(\frac{\partial\phi}{\partial{x}}\right)_{{x}} \\ $$$${E}_{{x}+{dx}} =\left(\frac{\partial\phi}{\partial{x}}\right)_{{x}+{dx}} \\ $$$${from}\:{Gauss}'\:{law}\:{for}\:{gravitation} \\ $$$$βˆ’\mathrm{4}\pi{Gm}=\Sigma\left({E}_{{x}+{dx}} βˆ’{E}_{{x}} \right){dydz} \\ $$$$βˆ’\mathrm{4}\pi{G}\rho=\Sigma\left(\frac{{E}_{{x}+{dx}} βˆ’{E}_{{x}} }{{dx}}\right) \\ $$$$βˆ’\mathrm{4}\pi{G}\rho=\Sigma\left(\frac{\partial{E}_{{x}} }{\partial{x}^{\mathrm{2}} }\right) \\ $$$$βˆ’\mathrm{4}\pi{G}\rho=\Sigma\frac{\partial^{\mathrm{2}} \phi}{\partial{x}^{\mathrm{2}} }\:=\bigtriangledown^{\mathrm{2}} \phi \\ $$$$\Rightarrow\:\:\bigtriangledown^{\mathrm{2}} \phi=βˆ’\mathrm{4}\pi{G}\rho\:\:\blacksquare \\ $$

Commented by Dwaipayan Shikari last updated on 08/Apr/21

Thanks sir.Great!

$${Thanks}\:{sir}.{Great}! \\ $$

Commented by Dwaipayan Shikari last updated on 08/Apr/21

My approach  F=((GMMβ€²)/R^2 )β‡’E_G =((GM)/R^2 )  ∫_S E_G .ds=∫_V (β–½.E)dV              F=βˆ’β–½π›— (for unit mass E_G =βˆ’β–½Ο†)  β‡’βˆ«_S ((GM)/R^2 )ds=∫_V (βˆ’β–½^2 .𝛗)dV  β‡’4Ο€R^2 (((GM)/R^2 ))=βˆ’βˆ«_V β–½^2 𝛗dV               M=∫ρdV  β‡’βˆ’4Ο€G∫_V ρdV=∫_V β–½^2 𝛗dV  β‡’β–½^2 𝛗=βˆ’4Ο€Gρ

$${My}\:{approach} \\ $$$${F}=\frac{{GMM}'}{{R}^{\mathrm{2}} }\Rightarrow{E}_{{G}} =\frac{{GM}}{{R}^{\mathrm{2}} } \\ $$$$\int_{{S}} \boldsymbol{{E}}_{{G}} .{ds}=\int_{{V}} \left(\bigtriangledown.\boldsymbol{{E}}\right){dV}\:\:\:\:\:\:\:\:\:\:\:\:\:\:{F}=βˆ’\bigtriangledown\boldsymbol{\phi}\:\left({for}\:{unit}\:{mass}\:{E}_{{G}} =βˆ’\bigtriangledown\phi\right) \\ $$$$\Rightarrow\int_{{S}} \frac{{GM}}{{R}^{\mathrm{2}} }{ds}=\int_{{V}} \left(βˆ’\bigtriangledown^{\mathrm{2}} .\boldsymbol{\phi}\right){dV} \\ $$$$\Rightarrow\mathrm{4}\pi{R}^{\mathrm{2}} \left(\frac{{GM}}{{R}^{\mathrm{2}} }\right)=βˆ’\int_{{V}} \bigtriangledown^{\mathrm{2}} \boldsymbol{\phi}{dV}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{M}=\int\rho{dV} \\ $$$$\Rightarrowβˆ’\mathrm{4}\pi{G}\int_{{V}} \rho{dV}=\int_{{V}} \bigtriangledown^{\mathrm{2}} \boldsymbol{\phi}{dV} \\ $$$$\Rightarrow\bigtriangledown^{\mathrm{2}} \boldsymbol{\phi}=βˆ’\mathrm{4}\pi\boldsymbol{{G}}\rho \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com