Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 138742 by mnjuly1970 last updated on 17/Apr/21

           ........ nice   ....   calculus...    evaluate ::          Ω=∫_0 ^( 1) ((x^(e^π −1) −x^(e^γ −1) )/(ln((x)^(1/3)  )))dx=^? 3(π−γ)

$$\:\:\:\:\:\:\:\:\:\:\:........\:{nice}\:\:\:....\:\:\:{calculus}... \\ $$$$\:\:{evaluate}\::: \\ $$$$\:\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{x}^{{e}^{\pi} −\mathrm{1}} −{x}^{{e}^{\gamma} −\mathrm{1}} }{{ln}\left(\sqrt[{\mathrm{3}}]{{x}}\:\right)}{dx}\overset{?} {=}\mathrm{3}\left(\pi−\gamma\right) \\ $$

Answered by Dwaipayan Shikari last updated on 17/Apr/21

3∫_0 ^1 ((x^(e^π −1) −x^(e^γ −1) )/(log(x)))dx=3χ(e^π −1,e^γ −1)=3(π−γ)  χ(a,b)=∫_0 ^1 ((x^a −x^b )/(log(x)))dx  (∂/∂a)χ(a,b)=(1/(a+1))⇒χ(a,b)=log(a+1)+C  χ(b,b)=0 ⇒C=−log(b+1)  ⇒χ(a,b)=log(((a+1)/(b+1)))

$$\mathrm{3}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{e}^{\pi} −\mathrm{1}} −{x}^{{e}^{\gamma} −\mathrm{1}} }{{log}\left({x}\right)}{dx}=\mathrm{3}\chi\left({e}^{\pi} −\mathrm{1},{e}^{\gamma} −\mathrm{1}\right)=\mathrm{3}\left(\pi−\gamma\right) \\ $$$$\chi\left({a},{b}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{a}} −{x}^{{b}} }{{log}\left({x}\right)}{dx} \\ $$$$\frac{\partial}{\partial{a}}\chi\left({a},{b}\right)=\frac{\mathrm{1}}{{a}+\mathrm{1}}\Rightarrow\chi\left({a},{b}\right)={log}\left({a}+\mathrm{1}\right)+{C} \\ $$$$\chi\left({b},{b}\right)=\mathrm{0}\:\Rightarrow{C}=−{log}\left({b}+\mathrm{1}\right)\:\:\Rightarrow\chi\left({a},{b}\right)={log}\left(\frac{{a}+\mathrm{1}}{{b}+\mathrm{1}}\right) \\ $$

Commented by Ar Brandon last updated on 17/Apr/21

Wow cool! I was supposed to remain at  the first power.

$$\mathrm{Wow}\:\mathrm{cool}!\:\mathrm{I}\:\mathrm{was}\:\mathrm{supposed}\:\mathrm{to}\:\mathrm{remain}\:\mathrm{at} \\ $$$$\mathrm{the}\:\mathrm{first}\:\mathrm{power}. \\ $$

Commented by mnjuly1970 last updated on 17/Apr/21

tashakor ...mercey..

$${tashakor}\:...{mercey}.. \\ $$

Answered by Ar Brandon last updated on 17/Apr/21

Ω=∫_0 ^1 ((x^(e^π −1) −x^(e^γ −1) )/(ln((x)^(1/3) )))dx, u=x^(1/3) ⇒3u^2 du=dx      =∫_0 ^1 ((u^(3(e^π −1)) −u^(3(e^γ −1)) )/(ln(u)))(3u^2 du)=3∫_0 ^1 ((u^(3e^π −1) −u^(3e^γ −1) )/(ln(u)))du  f(α)=3∫_0 ^1 ((u^(3e^π +α) −u^(3e^γ +α) )/(ln(u)))du  f ′(α)=3∫_0 ^1 (u^(3e^π +α) −u^(3e^γ +α) )du             =3[(u^(3e^π +α+1) /(3e^π +α+1))−(u^(3e^γ +α+1) /(3e^γ +α+1))]_0 ^1       =3[(1/(3e^π +α+1))−(1/(3e^γ +α+1))]  f(α)=3ln(3e^π +α+1)−3ln(3e^γ +α+1)+C

$$\Omega=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{x}^{\mathrm{e}^{\pi} −\mathrm{1}} −\mathrm{x}^{\mathrm{e}^{\gamma} −\mathrm{1}} }{\mathrm{ln}\left(\sqrt[{\mathrm{3}}]{\mathrm{x}}\right)}\mathrm{dx},\:\mathrm{u}=\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{3}}} \Rightarrow\mathrm{3u}^{\mathrm{2}} \mathrm{du}=\mathrm{dx} \\ $$$$\:\:\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{u}^{\mathrm{3}\left(\mathrm{e}^{\pi} −\mathrm{1}\right)} −\mathrm{u}^{\mathrm{3}\left(\mathrm{e}^{\gamma} −\mathrm{1}\right)} }{\mathrm{ln}\left(\mathrm{u}\right)}\left(\mathrm{3u}^{\mathrm{2}} \mathrm{du}\right)=\mathrm{3}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{u}^{\mathrm{3e}^{\pi} −\mathrm{1}} −\mathrm{u}^{\mathrm{3e}^{\gamma} −\mathrm{1}} }{\mathrm{ln}\left(\mathrm{u}\right)}\mathrm{du} \\ $$$$\mathrm{f}\left(\alpha\right)=\mathrm{3}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{u}^{\mathrm{3e}^{\pi} +\alpha} −\mathrm{u}^{\mathrm{3e}^{\gamma} +\alpha} }{\mathrm{ln}\left(\mathrm{u}\right)}\mathrm{du} \\ $$$$\mathrm{f}\:'\left(\alpha\right)=\mathrm{3}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{u}^{\mathrm{3e}^{\pi} +\alpha} −\mathrm{u}^{\mathrm{3e}^{\gamma} +\alpha} \right)\mathrm{du} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\mathrm{3}\left[\frac{\mathrm{u}^{\mathrm{3e}^{\pi} +\alpha+\mathrm{1}} }{\mathrm{3e}^{\pi} +\alpha+\mathrm{1}}−\frac{\mathrm{u}^{\mathrm{3e}^{\gamma} +\alpha+\mathrm{1}} }{\mathrm{3e}^{\gamma} +\alpha+\mathrm{1}}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\:\:\:\:=\mathrm{3}\left[\frac{\mathrm{1}}{\mathrm{3e}^{\pi} +\alpha+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{3e}^{\gamma} +\alpha+\mathrm{1}}\right] \\ $$$$\mathrm{f}\left(\alpha\right)=\mathrm{3ln}\left(\mathrm{3e}^{\pi} +\alpha+\mathrm{1}\right)−\mathrm{3ln}\left(\mathrm{3e}^{\gamma} +\alpha+\mathrm{1}\right)+\mathrm{C} \\ $$

Commented by mnjuly1970 last updated on 17/Apr/21

thanks alot...

$${thanks}\:{alot}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com