Question and Answers Forum

All Questions      Topic List

Properties of Matter Questions

Previous in All Question      Next in All Question      

Previous in Properties of Matter      Next in Properties of Matter      

Question Number 139013 by ajfour last updated on 21/Apr/21

Answered by mr W last updated on 21/Apr/21

Commented by mr W last updated on 21/Apr/21

assume:  air bubble is very small compared with   the sphere.  there is no resistance with water.  there is no resistance with surface  of sphere.  r_0 =radius of bubble at O.  r=radius of bubble at T.  m=mass of air bubble.  ρ_W =density of water.  h=equivalent depth of center of sphere.  let λ=(h/R)  (V/V_0 )=(r^3 /r_0 ^3 )=((h+R)/(h+R cos θ))=((λ+1)/(λ+cos θ))  F=((4πρ_W gr^3 )/3)  F=((4πρ_W gr_0 ^3 )/3)(((λ+1)/(λ+cos θ)))  F=m_0 g(((λ+1)/(λ+cos θ))) with m_0 =((4πρ_W r_0 ^3 )/3)  F_R =(F−mg) cos θ  F_θ =(F−mg) sin θ  ω=(dθ/dt)  α=(dω/dt)=ω(dω/dθ)  mRα=(F−mg) sin θ  Rα=((m_0 /m)×((λ+1)/(λ+cos θ))−1)g sin θ  α=ω(dω/dθ)=((m_0 /m)×((λ+1)/(λ+cos θ))−1)(g/R) sin θ  ∫_0 ^ω ωdω=∫_0 ^θ ((m_0 /m)×((λ+1)/(λ+cos θ))−1)(g/R) sin θdθ  ⇒ω^2 =((2g)/R)∫_0 ^θ ((m_0 /m)×((λ+1)/(λ+cos θ))−1)sin θdθ  mRω^2 =(F−mg) cos θ  ⇒ω^2 =(g/R)((m_0 /m)×((λ+1)/(λ+cos θ))−1)cos θ  ((m_0 /m)×((λ+1)/(λ+cos θ))−1)cos θ=2∫_0 ^θ ((m_0 /m)×((λ+1)/(λ+cos θ))−1) sin θdθ  (((λ+1)/(λ+cos θ))−(m/m_0 ))cos θ=2∫_0 ^θ (((λ+1)/(λ+cos θ))−(m/m_0 )) sin θdθ  since density of air is much smaller  than that of water, (m/m_0 )=(ρ_(Air) /ρ_W )≈0.  ((λ+1)/(λ+cos θ))cos θ=2∫_0 ^θ ((λ+1)/(λ+cos θ)) sin θdθ  ((cos θ)/(λ+cos θ))=−2∫_0 ^θ ((d(λ+cos θ))/(λ+cos θ))  ⇒((cos θ)/(λ+cos θ))=2ln ((λ+1)/(λ+cos θ))  we get θ from it.  (b/a)=(r/r_0 )=(((λ+1)/(λ+cos θ)))^(1/3)     examples:  λ=(h/R)=1: θ≈49.90°, (b/a)≈1.07  λ=(h/R)=5: θ≈48.69°, (b/a)≈1.53  λ=(h/R)=10: θ≈48.46°, (b/a)≈1.88

$${assume}: \\ $$$${air}\:{bubble}\:{is}\:{very}\:{small}\:{compared}\:{with}\: \\ $$$${the}\:{sphere}. \\ $$$${there}\:{is}\:{no}\:{resistance}\:{with}\:{water}. \\ $$$${there}\:{is}\:{no}\:{resistance}\:{with}\:{surface} \\ $$$${of}\:{sphere}. \\ $$$${r}_{\mathrm{0}} ={radius}\:{of}\:{bubble}\:{at}\:{O}. \\ $$$${r}={radius}\:{of}\:{bubble}\:{at}\:{T}. \\ $$$${m}={mass}\:{of}\:{air}\:{bubble}. \\ $$$$\rho_{{W}} ={density}\:{of}\:{water}. \\ $$$${h}={equivalent}\:{depth}\:{of}\:{center}\:{of}\:{sphere}. \\ $$$${let}\:\lambda=\frac{{h}}{{R}} \\ $$$$\frac{{V}}{{V}_{\mathrm{0}} }=\frac{{r}^{\mathrm{3}} }{{r}_{\mathrm{0}} ^{\mathrm{3}} }=\frac{{h}+{R}}{{h}+{R}\:\mathrm{cos}\:\theta}=\frac{\lambda+\mathrm{1}}{\lambda+\mathrm{cos}\:\theta} \\ $$$${F}=\frac{\mathrm{4}\pi\rho_{{W}} {gr}^{\mathrm{3}} }{\mathrm{3}} \\ $$$${F}=\frac{\mathrm{4}\pi\rho_{{W}} {gr}_{\mathrm{0}} ^{\mathrm{3}} }{\mathrm{3}}\left(\frac{\lambda+\mathrm{1}}{\lambda+\mathrm{cos}\:\theta}\right) \\ $$$${F}={m}_{\mathrm{0}} {g}\left(\frac{\lambda+\mathrm{1}}{\lambda+\mathrm{cos}\:\theta}\right)\:{with}\:{m}_{\mathrm{0}} =\frac{\mathrm{4}\pi\rho_{{W}} {r}_{\mathrm{0}} ^{\mathrm{3}} }{\mathrm{3}} \\ $$$${F}_{{R}} =\left({F}−{mg}\right)\:\mathrm{cos}\:\theta \\ $$$${F}_{\theta} =\left({F}−{mg}\right)\:\mathrm{sin}\:\theta \\ $$$$\omega=\frac{{d}\theta}{{dt}} \\ $$$$\alpha=\frac{{d}\omega}{{dt}}=\omega\frac{{d}\omega}{{d}\theta} \\ $$$${mR}\alpha=\left({F}−{mg}\right)\:\mathrm{sin}\:\theta \\ $$$${R}\alpha=\left(\frac{{m}_{\mathrm{0}} }{{m}}×\frac{\lambda+\mathrm{1}}{\lambda+\mathrm{cos}\:\theta}−\mathrm{1}\right){g}\:\mathrm{sin}\:\theta \\ $$$$\alpha=\omega\frac{{d}\omega}{{d}\theta}=\left(\frac{{m}_{\mathrm{0}} }{{m}}×\frac{\lambda+\mathrm{1}}{\lambda+\mathrm{cos}\:\theta}−\mathrm{1}\right)\frac{{g}}{{R}}\:\mathrm{sin}\:\theta \\ $$$$\int_{\mathrm{0}} ^{\omega} \omega{d}\omega=\int_{\mathrm{0}} ^{\theta} \left(\frac{{m}_{\mathrm{0}} }{{m}}×\frac{\lambda+\mathrm{1}}{\lambda+\mathrm{cos}\:\theta}−\mathrm{1}\right)\frac{{g}}{{R}}\:\mathrm{sin}\:\theta{d}\theta \\ $$$$\Rightarrow\omega^{\mathrm{2}} =\frac{\mathrm{2}{g}}{{R}}\int_{\mathrm{0}} ^{\theta} \left(\frac{{m}_{\mathrm{0}} }{{m}}×\frac{\lambda+\mathrm{1}}{\lambda+\mathrm{cos}\:\theta}−\mathrm{1}\right)\mathrm{sin}\:\theta{d}\theta \\ $$$${mR}\omega^{\mathrm{2}} =\left({F}−{mg}\right)\:\mathrm{cos}\:\theta \\ $$$$\Rightarrow\omega^{\mathrm{2}} =\frac{{g}}{{R}}\left(\frac{{m}_{\mathrm{0}} }{{m}}×\frac{\lambda+\mathrm{1}}{\lambda+\mathrm{cos}\:\theta}−\mathrm{1}\right)\mathrm{cos}\:\theta \\ $$$$\left(\frac{{m}_{\mathrm{0}} }{{m}}×\frac{\lambda+\mathrm{1}}{\lambda+\mathrm{cos}\:\theta}−\mathrm{1}\right)\mathrm{cos}\:\theta=\mathrm{2}\int_{\mathrm{0}} ^{\theta} \left(\frac{{m}_{\mathrm{0}} }{{m}}×\frac{\lambda+\mathrm{1}}{\lambda+\mathrm{cos}\:\theta}−\mathrm{1}\right)\:\mathrm{sin}\:\theta{d}\theta \\ $$$$\left(\frac{\lambda+\mathrm{1}}{\lambda+\mathrm{cos}\:\theta}−\frac{{m}}{{m}_{\mathrm{0}} }\right)\mathrm{cos}\:\theta=\mathrm{2}\int_{\mathrm{0}} ^{\theta} \left(\frac{\lambda+\mathrm{1}}{\lambda+\mathrm{cos}\:\theta}−\frac{{m}}{{m}_{\mathrm{0}} }\right)\:\mathrm{sin}\:\theta{d}\theta \\ $$$${since}\:{density}\:{of}\:{air}\:{is}\:{much}\:{smaller} \\ $$$${than}\:{that}\:{of}\:{water},\:\frac{{m}}{{m}_{\mathrm{0}} }=\frac{\rho_{{Air}} }{\rho_{{W}} }\approx\mathrm{0}. \\ $$$$\frac{\lambda+\mathrm{1}}{\lambda+\mathrm{cos}\:\theta}\mathrm{cos}\:\theta=\mathrm{2}\int_{\mathrm{0}} ^{\theta} \frac{\lambda+\mathrm{1}}{\lambda+\mathrm{cos}\:\theta}\:\mathrm{sin}\:\theta{d}\theta \\ $$$$\frac{\mathrm{cos}\:\theta}{\lambda+\mathrm{cos}\:\theta}=−\mathrm{2}\int_{\mathrm{0}} ^{\theta} \frac{{d}\left(\lambda+\mathrm{cos}\:\theta\right)}{\lambda+\mathrm{cos}\:\theta} \\ $$$$\Rightarrow\frac{\mathrm{cos}\:\theta}{\lambda+\mathrm{cos}\:\theta}=\mathrm{2ln}\:\frac{\lambda+\mathrm{1}}{\lambda+\mathrm{cos}\:\theta} \\ $$$${we}\:{get}\:\theta\:{from}\:{it}. \\ $$$$\frac{{b}}{{a}}=\frac{{r}}{{r}_{\mathrm{0}} }=\sqrt[{\mathrm{3}}]{\frac{\lambda+\mathrm{1}}{\lambda+\mathrm{cos}\:\theta}} \\ $$$$ \\ $$$${examples}: \\ $$$$\lambda=\frac{{h}}{{R}}=\mathrm{1}:\:\theta\approx\mathrm{49}.\mathrm{90}°,\:\frac{{b}}{{a}}\approx\mathrm{1}.\mathrm{07} \\ $$$$\lambda=\frac{{h}}{{R}}=\mathrm{5}:\:\theta\approx\mathrm{48}.\mathrm{69}°,\:\frac{{b}}{{a}}\approx\mathrm{1}.\mathrm{53} \\ $$$$\lambda=\frac{{h}}{{R}}=\mathrm{10}:\:\theta\approx\mathrm{48}.\mathrm{46}°,\:\frac{{b}}{{a}}\approx\mathrm{1}.\mathrm{88} \\ $$

Commented by ajfour last updated on 22/Apr/21

Thanks sir, beautiful answer;  I haven′t had enough leisure time..

$${Thanks}\:{sir},\:{beautiful}\:{answer}; \\ $$$${I}\:{haven}'{t}\:{had}\:{enough}\:{leisure}\:{time}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com