Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 139285 by mohammad17 last updated on 25/Apr/21

∫_0 ^(π/2) sin^2 (x)cos^6 (x)dx

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}} \left({x}\right){cos}^{\mathrm{6}} \left({x}\right){dx} \\ $$

Answered by qaz last updated on 25/Apr/21

∫_0 ^(π/2) sin^2 xcos^6 xdx=(1/2)B((3/2),(7/2))  =((((1×5×3×1)/(2×2×2×2))π)/(2×4×3×2))=((5π)/(256))

$$\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} {x}\mathrm{cos}\:^{\mathrm{6}} {xdx}=\frac{\mathrm{1}}{\mathrm{2}}{B}\left(\frac{\mathrm{3}}{\mathrm{2}},\frac{\mathrm{7}}{\mathrm{2}}\right) \\ $$$$=\frac{\frac{\mathrm{1}×\mathrm{5}×\mathrm{3}×\mathrm{1}}{\mathrm{2}×\mathrm{2}×\mathrm{2}×\mathrm{2}}\pi}{\mathrm{2}×\mathrm{4}×\mathrm{3}×\mathrm{2}}=\frac{\mathrm{5}\pi}{\mathrm{256}} \\ $$

Commented by mohammad17 last updated on 25/Apr/21

thank you sir can you give me steb by steb  please?

$${thank}\:{you}\:{sir}\:{can}\:{you}\:{give}\:{me}\:{steb}\:{by}\:{steb} \\ $$$${please}? \\ $$

Commented by qaz last updated on 25/Apr/21

∫_0 ^(π/2) sin^p xcos^q xdx=(1/2)B(((p+1)/2),((q+1)/2))  =((Γ(((p+1)/2))Γ(((q+1)/2)))/(2Γ(((p+q+2)/2))))  Γ(x+1)=xΓ(x)  Γ((1/2))=(√π)

$$\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{sin}\:^{{p}} {x}\mathrm{cos}\:^{{q}} {xdx}=\frac{\mathrm{1}}{\mathrm{2}}{B}\left(\frac{{p}+\mathrm{1}}{\mathrm{2}},\frac{{q}+\mathrm{1}}{\mathrm{2}}\right) \\ $$$$=\frac{\Gamma\left(\frac{{p}+\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{{q}+\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}\Gamma\left(\frac{{p}+{q}+\mathrm{2}}{\mathrm{2}}\right)} \\ $$$$\Gamma\left({x}+\mathrm{1}\right)={x}\Gamma\left({x}\right) \\ $$$$\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\sqrt{\pi} \\ $$

Answered by MJS_new last updated on 25/Apr/21

∫sin^2  x cos^6  x dx=       [t=tan x → dx=cos^2  x dt]  =∫(t^2 /((t^2 +1)^5 ))dt=       [Ostrogradski′s Method]  =((t(15t^6 +55t^4 +73t^2 −15))/(384(t^2 +1)^4 ))+(5/(128))∫(dt/(t^2 +1))=  =((t(15t^6 +55t^4 +73t^2 −15))/(384(t^2 +1)^4 ))+(5/(128))arctan t  ⇒ answer is ((5π)/(256))

$$\int\mathrm{sin}^{\mathrm{2}} \:{x}\:\mathrm{cos}^{\mathrm{6}} \:{x}\:{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:{x}\:\rightarrow\:{dx}=\mathrm{cos}^{\mathrm{2}} \:{x}\:{dt}\right] \\ $$$$=\int\frac{{t}^{\mathrm{2}} }{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{5}} }{dt}= \\ $$$$\:\:\:\:\:\left[\mathrm{Ostrogradski}'\mathrm{s}\:\mathrm{Method}\right] \\ $$$$=\frac{{t}\left(\mathrm{15}{t}^{\mathrm{6}} +\mathrm{55}{t}^{\mathrm{4}} +\mathrm{73}{t}^{\mathrm{2}} −\mathrm{15}\right)}{\mathrm{384}\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{4}} }+\frac{\mathrm{5}}{\mathrm{128}}\int\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{1}}= \\ $$$$=\frac{{t}\left(\mathrm{15}{t}^{\mathrm{6}} +\mathrm{55}{t}^{\mathrm{4}} +\mathrm{73}{t}^{\mathrm{2}} −\mathrm{15}\right)}{\mathrm{384}\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{4}} }+\frac{\mathrm{5}}{\mathrm{128}}\mathrm{arctan}\:{t} \\ $$$$\Rightarrow\:\mathrm{answer}\:\mathrm{is}\:\frac{\mathrm{5}\pi}{\mathrm{256}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com