Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 140221 by qaz last updated on 05/May/21

∫_0 ^∞ x^2 [ln(1+e^x )−x]dx=((7π^4 )/(360))

$$\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{2}} \left[{ln}\left(\mathrm{1}+{e}^{{x}} \right)−{x}\right]{dx}=\frac{\mathrm{7}\pi^{\mathrm{4}} }{\mathrm{360}} \\ $$

Answered by Dwaipayan Shikari last updated on 05/May/21

∫_0 ^∞ x^2 log(((1+e^x )/e^x ))dx  =Σ∫_0 ^∞ (−1)^n x^2 (e^(−nx) /n)dx  =Σ(((−1)^(n+1) )/n^4 )Γ(3)=2ζ(4)(1−(1/2^3 ))=(7/4)ζ(4)=((7π^4 )/(360))

$$\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{2}} {log}\left(\frac{\mathrm{1}+{e}^{{x}} }{{e}^{{x}} }\right){dx} \\ $$$$=\Sigma\int_{\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}} \frac{{e}^{−{nx}} }{{n}}{dx} \\ $$$$=\Sigma\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{{n}^{\mathrm{4}} }\Gamma\left(\mathrm{3}\right)=\mathrm{2}\zeta\left(\mathrm{4}\right)\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }\right)=\frac{\mathrm{7}}{\mathrm{4}}\zeta\left(\mathrm{4}\right)=\frac{\mathrm{7}\pi^{\mathrm{4}} }{\mathrm{360}} \\ $$

Commented by qaz last updated on 05/May/21

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com