Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 140270 by liberty last updated on 06/May/21

If (x−3)^2 +(y−4)^2  = 25 ,  what maximum and minimum  value of 7x+8y ?

$$\mathrm{If}\:\left(\mathrm{x}−\mathrm{3}\right)^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{4}\right)^{\mathrm{2}} \:=\:\mathrm{25}\:, \\ $$$$\mathrm{what}\:\mathrm{maximum}\:\mathrm{and}\:\mathrm{minimum} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{7x}+\mathrm{8y}\:? \\ $$

Answered by EDWIN88 last updated on 06/May/21

let  { ((x−3=5cos θ→x=3+5cos θ)),((y−4=5sin θ→y=4+5sin θ)) :}  let 7(3+5cos θ)+8(4+5sin θ)=f(θ)  f(θ)= 35cos θ+40sin θ+53  f(θ)=(√(35^2 +40^2 )) cos  (θ−α)+53  where α = tan^(−1) ((8/7))  f(θ)=(√(25(49+64))) cos (θ−α)+53   { ((f(θ)_(max)  = 5(√(113)) +53)),((f(θ)_(min)  = −5(√(113)) +53 )) :}

$$\mathrm{let}\:\begin{cases}{\mathrm{x}−\mathrm{3}=\mathrm{5cos}\:\theta\rightarrow\mathrm{x}=\mathrm{3}+\mathrm{5cos}\:\theta}\\{\mathrm{y}−\mathrm{4}=\mathrm{5sin}\:\theta\rightarrow\mathrm{y}=\mathrm{4}+\mathrm{5sin}\:\theta}\end{cases} \\ $$$$\mathrm{let}\:\mathrm{7}\left(\mathrm{3}+\mathrm{5cos}\:\theta\right)+\mathrm{8}\left(\mathrm{4}+\mathrm{5sin}\:\theta\right)=\mathrm{f}\left(\theta\right) \\ $$$$\mathrm{f}\left(\theta\right)=\:\mathrm{35cos}\:\theta+\mathrm{40sin}\:\theta+\mathrm{53} \\ $$$$\mathrm{f}\left(\theta\right)=\sqrt{\mathrm{35}^{\mathrm{2}} +\mathrm{40}^{\mathrm{2}} }\:\mathrm{cos}\:\:\left(\theta−\alpha\right)+\mathrm{53} \\ $$$$\mathrm{where}\:\alpha\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{8}}{\mathrm{7}}\right) \\ $$$$\mathrm{f}\left(\theta\right)=\sqrt{\mathrm{25}\left(\mathrm{49}+\mathrm{64}\right)}\:\mathrm{cos}\:\left(\theta−\alpha\right)+\mathrm{53} \\ $$$$\begin{cases}{\mathrm{f}\left(\theta\right)_{\mathrm{max}} \:=\:\mathrm{5}\sqrt{\mathrm{113}}\:+\mathrm{53}}\\{\mathrm{f}\left(\theta\right)_{\mathrm{min}} \:=\:−\mathrm{5}\sqrt{\mathrm{113}}\:+\mathrm{53}\:}\end{cases} \\ $$$$ \\ $$

Answered by mr W last updated on 06/May/21

an other way:  let 7x+8y=k  ⇒y=((k−7x)/8)  (x−3)^2 +(((k−7x)/8)−4)^2 =25  113x^2 −(14k−64)x+k^2 −64k=0  such that x∈R exists,  Δ=(14k−64)^2 −4×113×(k^2 −64k)≥0  ⇒k^2 −106k−16≤0  k_(1,2) =53±5(√(113))  ⇒53−5(√(113))≤k≤53+5(√(113))  i.e.  k_(min) =53−5(√(113))  k_(max) =53+5(√(113))

$${an}\:{other}\:{way}: \\ $$$${let}\:\mathrm{7}{x}+\mathrm{8}{y}={k} \\ $$$$\Rightarrow{y}=\frac{{k}−\mathrm{7}{x}}{\mathrm{8}} \\ $$$$\left({x}−\mathrm{3}\right)^{\mathrm{2}} +\left(\frac{{k}−\mathrm{7}{x}}{\mathrm{8}}−\mathrm{4}\right)^{\mathrm{2}} =\mathrm{25} \\ $$$$\mathrm{113}{x}^{\mathrm{2}} −\left(\mathrm{14}{k}−\mathrm{64}\right){x}+{k}^{\mathrm{2}} −\mathrm{64}{k}=\mathrm{0} \\ $$$${such}\:{that}\:{x}\in{R}\:{exists}, \\ $$$$\Delta=\left(\mathrm{14}{k}−\mathrm{64}\right)^{\mathrm{2}} −\mathrm{4}×\mathrm{113}×\left({k}^{\mathrm{2}} −\mathrm{64}{k}\right)\geqslant\mathrm{0} \\ $$$$\Rightarrow{k}^{\mathrm{2}} −\mathrm{106}{k}−\mathrm{16}\leqslant\mathrm{0} \\ $$$${k}_{\mathrm{1},\mathrm{2}} =\mathrm{53}\pm\mathrm{5}\sqrt{\mathrm{113}} \\ $$$$\Rightarrow\mathrm{53}−\mathrm{5}\sqrt{\mathrm{113}}\leqslant{k}\leqslant\mathrm{53}+\mathrm{5}\sqrt{\mathrm{113}} \\ $$$${i}.{e}. \\ $$$${k}_{{min}} =\mathrm{53}−\mathrm{5}\sqrt{\mathrm{113}} \\ $$$${k}_{{max}} =\mathrm{53}+\mathrm{5}\sqrt{\mathrm{113}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com