Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 140288 by liberty last updated on 06/May/21

Find the point(s) on the graph  of 3x^2 +10xy+3y^2 =9 closest to  the origin

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{point}\left(\mathrm{s}\right)\:\mathrm{on}\:\mathrm{the}\:\mathrm{graph} \\ $$$$\mathrm{of}\:\mathrm{3x}^{\mathrm{2}} +\mathrm{10xy}+\mathrm{3y}^{\mathrm{2}} =\mathrm{9}\:\mathrm{closest}\:\mathrm{to} \\ $$$$\mathrm{the}\:\mathrm{origin} \\ $$

Answered by mr W last updated on 06/May/21

with y=x:  3x^2 +10x^2 +3x^2 =9  16x^2 =9  x=±(3/4) ⇒y=±(3/4)  with y=−x:  3x^2 −10x^2 +3x^2 =9  −x^2 =9  ⇒no solution    point ((3/4),(3/4)) and (−(3/4),−(3/4)) are  closest to origin.

$${with}\:{y}={x}: \\ $$$$\mathrm{3}{x}^{\mathrm{2}} +\mathrm{10}{x}^{\mathrm{2}} +\mathrm{3}{x}^{\mathrm{2}} =\mathrm{9} \\ $$$$\mathrm{16}{x}^{\mathrm{2}} =\mathrm{9} \\ $$$${x}=\pm\frac{\mathrm{3}}{\mathrm{4}}\:\Rightarrow{y}=\pm\frac{\mathrm{3}}{\mathrm{4}} \\ $$$${with}\:{y}=−{x}: \\ $$$$\mathrm{3}{x}^{\mathrm{2}} −\mathrm{10}{x}^{\mathrm{2}} +\mathrm{3}{x}^{\mathrm{2}} =\mathrm{9} \\ $$$$−{x}^{\mathrm{2}} =\mathrm{9} \\ $$$$\Rightarrow{no}\:{solution} \\ $$$$ \\ $$$${point}\:\left(\frac{\mathrm{3}}{\mathrm{4}},\frac{\mathrm{3}}{\mathrm{4}}\right)\:{and}\:\left(−\frac{\mathrm{3}}{\mathrm{4}},−\frac{\mathrm{3}}{\mathrm{4}}\right)\:{are} \\ $$$${closest}\:{to}\:{origin}. \\ $$

Commented by liberty last updated on 06/May/21

why y=x ?

$$\mathrm{why}\:\mathrm{y}=\mathrm{x}\:?\: \\ $$

Commented by mr W last updated on 06/May/21

symmetry of hyperbola

$${symmetry}\:{of}\:{hyperbola} \\ $$

Commented by liberty last updated on 06/May/21

Commented by liberty last updated on 06/May/21

oo do you meant like this

$$\mathrm{oo}\:\mathrm{do}\:\mathrm{you}\:\mathrm{meant}\:\mathrm{like}\:\mathrm{this} \\ $$

Commented by mr W last updated on 06/May/21

yes

$${yes} \\ $$

Answered by liberty last updated on 06/May/21

let(x,y) is a point on curve 3x^2 +10xy+3y^2 =9  closest to the origin. square the  distance from the origin   u = x^2 +y^2  . by implicit diff  (1)(du/dx) = 2x+ 2y(dy/dx)  (2) from the second eq    6x + 10y +10x (dy/dx) + 6y (dy/dx) = 0  we get (dy/dx) =−((3x+5y)/(5x+3y))  substitute to eq(1)  ⇒ (du/dx) = 2x−2y(((3x+5y)/(5x+3y)))=0  ⇒x^2 =y^2 ; x = ± y  substituting in the eq of the  graph 16x^2 =9 → { ((x=±(3/4))),((y=± (3/4))) :}

$$\mathrm{let}\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{point}\:\mathrm{on}\:\mathrm{curve}\:\mathrm{3x}^{\mathrm{2}} +\mathrm{10xy}+\mathrm{3y}^{\mathrm{2}} =\mathrm{9} \\ $$$$\mathrm{closest}\:\mathrm{to}\:\mathrm{the}\:\mathrm{origin}.\:\mathrm{square}\:\mathrm{the} \\ $$$$\mathrm{distance}\:\mathrm{from}\:\mathrm{the}\:\mathrm{origin} \\ $$$$\:\mathrm{u}\:=\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \:.\:\mathrm{by}\:\mathrm{implicit}\:\mathrm{diff} \\ $$$$\left(\mathrm{1}\right)\frac{\mathrm{du}}{\mathrm{dx}}\:=\:\mathrm{2x}+\:\mathrm{2y}\frac{\mathrm{dy}}{\mathrm{dx}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{from}\:\mathrm{the}\:\mathrm{second}\:\mathrm{eq}\: \\ $$$$\:\mathrm{6x}\:+\:\mathrm{10y}\:+\mathrm{10x}\:\frac{\mathrm{dy}}{\mathrm{dx}}\:+\:\mathrm{6y}\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{0} \\ $$$$\mathrm{we}\:\mathrm{get}\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=−\frac{\mathrm{3x}+\mathrm{5y}}{\mathrm{5x}+\mathrm{3y}} \\ $$$$\mathrm{substitute}\:\mathrm{to}\:\mathrm{eq}\left(\mathrm{1}\right) \\ $$$$\Rightarrow\:\frac{\mathrm{du}}{\mathrm{dx}}\:=\:\mathrm{2x}−\mathrm{2y}\left(\frac{\mathrm{3x}+\mathrm{5y}}{\mathrm{5x}+\mathrm{3y}}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{x}^{\mathrm{2}} =\mathrm{y}^{\mathrm{2}} ;\:\mathrm{x}\:=\:\pm\:\mathrm{y} \\ $$$$\mathrm{substituting}\:\mathrm{in}\:\mathrm{the}\:\mathrm{eq}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{graph}\:\mathrm{16x}^{\mathrm{2}} =\mathrm{9}\:\rightarrow\begin{cases}{\mathrm{x}=\pm\frac{\mathrm{3}}{\mathrm{4}}}\\{\mathrm{y}=\pm\:\frac{\mathrm{3}}{\mathrm{4}}}\end{cases} \\ $$

Commented by lyubita last updated on 06/May/21

tepebea

$${tepebea} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com