Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 140401 by mnjuly1970 last updated on 07/May/21

          evaluate ::       Φ:=∫_0 ^( ∞) xe^(−(x^2 /4)) ln(x)dx = m.( π γ)        find   ”  m  ” ......

$$\:\:\: \\ $$$$\:\:\:\:\:{evaluate}\::: \\ $$$$\:\:\:\:\:\Phi:=\int_{\mathrm{0}} ^{\:\infty} {xe}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} {ln}\left({x}\right){dx}\:=\:{m}.\left(\:\pi\:\gamma\right) \\ $$$$\:\:\:\:\:\:{find}\:\:\:''\:\:{m}\:\:''\:...... \\ $$$$ \\ $$

Answered by qaz last updated on 07/May/21

φ(a)=∫_0 ^∞ x^a e^(−(x^2 /4)) dx=((Γ(((a+1)/2)))/(2((1/4))^((a+1)/2) ))=2^a Γ(((a+1)/2))  Φ=φ(1)′={2^a ln2Γ(((a+1)/2))+2^a Γ(((a+1)/2))ψ(((a+1)/2))∙(1/2)}_(a=1)   =2ln2+ψ(1)  ⇒m=((2ln2−γ)/(πγ))

$$\phi\left({a}\right)=\int_{\mathrm{0}} ^{\infty} {x}^{{a}} {e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} {dx}=\frac{\Gamma\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{\frac{{a}+\mathrm{1}}{\mathrm{2}}} }=\mathrm{2}^{{a}} \Gamma\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\Phi=\phi\left(\mathrm{1}\right)'=\left\{\mathrm{2}^{{a}} {ln}\mathrm{2}\Gamma\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)+\mathrm{2}^{{a}} \Gamma\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)\psi\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)\centerdot\frac{\mathrm{1}}{\mathrm{2}}\right\}_{{a}=\mathrm{1}} \\ $$$$=\mathrm{2}{ln}\mathrm{2}+\psi\left(\mathrm{1}\right) \\ $$$$\Rightarrow{m}=\frac{\mathrm{2}{ln}\mathrm{2}−\gamma}{\pi\gamma} \\ $$

Commented by mnjuly1970 last updated on 07/May/21

thanks alot mr qaz..

$${thanks}\:{alot}\:{mr}\:{qaz}.. \\ $$

Answered by mnjuly1970 last updated on 07/May/21

  ((x/2))^2 =y ⇒x=2(√y)      Φ=∫_0 ^( ∞) 2(√y) e^(−y) ln(2(√y) )(dy/( (√y)))           =2∫_0 ^( ∞) e^(−y) ln(2)dy+∫_0 ^( ∞) e^(−y) ln(y)dy    = ln(4)−γ       ln(4)−γ=m(πγ)        m=((ln(4)−γ)/(πγ))

$$\:\:\left(\frac{{x}}{\mathrm{2}}\right)^{\mathrm{2}} ={y}\:\Rightarrow{x}=\mathrm{2}\sqrt{{y}} \\ $$$$\:\:\:\:\Phi=\int_{\mathrm{0}} ^{\:\infty} \mathrm{2}\sqrt{{y}}\:{e}^{−{y}} {ln}\left(\mathrm{2}\sqrt{{y}}\:\right)\frac{{dy}}{\:\sqrt{{y}}} \\ $$$$\:\:\:\:\:\:\:\:\:=\mathrm{2}\int_{\mathrm{0}} ^{\:\infty} {e}^{−{y}} {ln}\left(\mathrm{2}\right){dy}+\int_{\mathrm{0}} ^{\:\infty} {e}^{−{y}} {ln}\left({y}\right){dy} \\ $$$$\:\:=\:{ln}\left(\mathrm{4}\right)−\gamma \\ $$$$\:\:\:\:\:{ln}\left(\mathrm{4}\right)−\gamma={m}\left(\pi\gamma\right) \\ $$$$\:\:\:\:\:\:{m}=\frac{{ln}\left(\mathrm{4}\right)−\gamma}{\pi\gamma} \\ $$

Commented by qaz last updated on 07/May/21

i edited  again....

$${i}\:{edited}\:\:{again}.... \\ $$

Commented by mnjuly1970 last updated on 07/May/21

 grateful ....

$$\:{grateful}\:.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com