Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 14047 by FilupS last updated on 27/May/17

S=1+i−1−i+1+...  (1/i)=−i  S=i(−i+1+i−1−i+1+...)  S=i(−i+S)  S=1+iS  S(1−i)=1  ∴ S=(1/(1−i))     a) Is this correct?  b) Do there exist any other sequences        in the form of:  S=(a_1 +...+a_n )+(a_1 +...+a_n )+...  S=(a_1 +...+a_n )(1+1+...+1_(m times) )  ⇒S=Σ_(i=1) ^(m→∞) Σ_(j=1) ^n a_j   where a_(t+1) =ba_t ,  a_1 =ba_n      I′m very interested in these sequences

$${S}=\mathrm{1}+{i}−\mathrm{1}−{i}+\mathrm{1}+... \\ $$$$\frac{\mathrm{1}}{{i}}=−{i} \\ $$$${S}={i}\left(−{i}+\mathrm{1}+{i}−\mathrm{1}−{i}+\mathrm{1}+...\right) \\ $$$${S}={i}\left(−{i}+{S}\right) \\ $$$${S}=\mathrm{1}+{iS} \\ $$$${S}\left(\mathrm{1}−{i}\right)=\mathrm{1} \\ $$$$\therefore\:{S}=\frac{\mathrm{1}}{\mathrm{1}−{i}} \\ $$$$\: \\ $$$$\left.\mathrm{a}\right)\:\mathrm{Is}\:\mathrm{this}\:\mathrm{correct}? \\ $$$$\left.\mathrm{b}\right)\:\mathrm{Do}\:\mathrm{there}\:\mathrm{exist}\:\mathrm{any}\:\mathrm{other}\:\mathrm{sequences} \\ $$$$\:\:\:\:\:\:\mathrm{in}\:\mathrm{the}\:\mathrm{form}\:\mathrm{of}: \\ $$$${S}=\left({a}_{\mathrm{1}} +...+{a}_{{n}} \right)+\left({a}_{\mathrm{1}} +...+{a}_{{n}} \right)+... \\ $$$${S}=\left({a}_{\mathrm{1}} +...+{a}_{{n}} \right)\left(\underset{{m}\:\mathrm{times}} {\mathrm{1}+\mathrm{1}+...+\mathrm{1}}\right) \\ $$$$\Rightarrow{S}=\underset{{i}=\mathrm{1}} {\overset{{m}\rightarrow\infty} {\sum}}\underset{{j}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{j}} \\ $$$$\mathrm{where}\:{a}_{{t}+\mathrm{1}} ={ba}_{{t}} ,\:\:{a}_{\mathrm{1}} ={ba}_{{n}} \\ $$$$\: \\ $$$$\mathrm{I}'\mathrm{m}\:\mathrm{very}\:\mathrm{interested}\:\mathrm{in}\:\mathrm{these}\:\mathrm{sequences} \\ $$

Commented by prakash jain last updated on 27/May/17

This is geometric series with  common ratio i.  Since ∣i∣=1, by geometric series  test the series diverges.  S_(4n) =0  S_(4n+1) =1  S_(4n+2) =1+i  S_(4n+3) =i  S=((0+(1)+(1+i)+(i))/4)=((1+i)/2)

$$\mathrm{This}\:\mathrm{is}\:\mathrm{geometric}\:\mathrm{series}\:\mathrm{with} \\ $$$$\mathrm{common}\:\mathrm{ratio}\:{i}. \\ $$$$\mathrm{Since}\:\mid{i}\mid=\mathrm{1},\:\mathrm{by}\:\mathrm{geometric}\:\mathrm{series} \\ $$$$\mathrm{test}\:\mathrm{the}\:\mathrm{series}\:\mathrm{diverges}. \\ $$$${S}_{\mathrm{4}{n}} =\mathrm{0} \\ $$$${S}_{\mathrm{4}{n}+\mathrm{1}} =\mathrm{1} \\ $$$${S}_{\mathrm{4}{n}+\mathrm{2}} =\mathrm{1}+{i} \\ $$$${S}_{\mathrm{4}{n}+\mathrm{3}} ={i} \\ $$$${S}=\frac{\mathrm{0}+\left(\mathrm{1}\right)+\left(\mathrm{1}+{i}\right)+\left({i}\right)}{\mathrm{4}}=\frac{\mathrm{1}+{i}}{\mathrm{2}} \\ $$

Commented by prakash jain last updated on 27/May/17

S=(1/(1+i)) is not correct. You can  get 4 different answers for S.  S=1+i−1−i+1+i−1−i      =(1+i)−(1+i)+(1+i)+...      =(1+i)−[(1+i)−(1+i)...]       =(1+i)−S  2S=(1+i)⇒S=((1+i)/2)

$${S}=\frac{\mathrm{1}}{\mathrm{1}+{i}}\:\mathrm{is}\:\mathrm{not}\:\mathrm{correct}.\:\mathrm{You}\:\mathrm{can} \\ $$$$\mathrm{get}\:\mathrm{4}\:\mathrm{different}\:\mathrm{answers}\:\mathrm{for}\:{S}. \\ $$$${S}=\mathrm{1}+{i}−\mathrm{1}−{i}+\mathrm{1}+{i}−\mathrm{1}−{i} \\ $$$$\:\:\:\:=\left(\mathrm{1}+{i}\right)−\left(\mathrm{1}+{i}\right)+\left(\mathrm{1}+{i}\right)+... \\ $$$$\:\:\:\:=\left(\mathrm{1}+{i}\right)−\left[\left(\mathrm{1}+{i}\right)−\left(\mathrm{1}+{i}\right)...\right] \\ $$$$\:\:\:\:\:=\left(\mathrm{1}+{i}\right)−{S} \\ $$$$\mathrm{2}{S}=\left(\mathrm{1}+{i}\right)\Rightarrow{S}=\frac{\mathrm{1}+{i}}{\mathrm{2}} \\ $$

Commented by RasheedSindhi last updated on 27/May/17

S=1+iS  ⇒^? S(1+i)=1

$${S}=\mathrm{1}+{iS} \\ $$$$\overset{?} {\Rightarrow}{S}\left(\mathrm{1}+{i}\right)=\mathrm{1} \\ $$$$ \\ $$

Commented by ajfour last updated on 27/May/17

S_n =((1/2)+(i/2))(1−i^n )   S_(4n) =0  S_(4n+1) =1  S_(4n+2) =1+i  S_(4n+3) =i   .

$${S}_{{n}} =\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{{i}}{\mathrm{2}}\right)\left(\mathrm{1}−{i}^{{n}} \right)\: \\ $$$${S}_{\mathrm{4}{n}} =\mathrm{0} \\ $$$${S}_{\mathrm{4}{n}+\mathrm{1}} =\mathrm{1} \\ $$$${S}_{\mathrm{4}{n}+\mathrm{2}} =\mathrm{1}+{i} \\ $$$${S}_{\mathrm{4}{n}+\mathrm{3}} ={i}\:\:\:. \\ $$

Commented by ajfour last updated on 27/May/17

Commented by prakash jain last updated on 27/May/17

S_n  is fine geometric series  and finite number of terms  converges.  Geometric series with ∣r∣≥1  diverges.   For example  S=1−1+1−1+...  diverges and does not have a fixed  sum.  S=1 or 0   so S can be taken as (1/2) using  analytical continuation.

$${S}_{{n}} \:\mathrm{is}\:\mathrm{fine}\:\mathrm{geometric}\:\mathrm{series} \\ $$$$\mathrm{and}\:\mathrm{finite}\:\mathrm{number}\:\mathrm{of}\:\mathrm{terms} \\ $$$$\mathrm{converges}. \\ $$$$\mathrm{Geometric}\:\mathrm{series}\:\mathrm{with}\:\mid{r}\mid\geqslant\mathrm{1} \\ $$$$\mathrm{diverges}.\: \\ $$$$\mathrm{For}\:\mathrm{example} \\ $$$$\mathrm{S}=\mathrm{1}−\mathrm{1}+\mathrm{1}−\mathrm{1}+... \\ $$$$\mathrm{diverges}\:\mathrm{and}\:\mathrm{does}\:\mathrm{not}\:\mathrm{have}\:\mathrm{a}\:\mathrm{fixed} \\ $$$$\mathrm{sum}. \\ $$$$\mathrm{S}=\mathrm{1}\:{or}\:\mathrm{0}\: \\ $$$$\mathrm{so}\:{S}\:\mathrm{can}\:\mathrm{be}\:\mathrm{taken}\:\mathrm{as}\:\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{using} \\ $$$$\mathrm{analytical}\:\mathrm{continuation}. \\ $$

Commented by FilupS last updated on 27/May/17

S=(1/(1+i)) has been corrected to S=(1/(1−i))    This is all interesting.  I am aware of S=1−1+1−1+...  These kinds if sequences are interesting

$${S}=\frac{\mathrm{1}}{\mathrm{1}+{i}}\:\mathrm{has}\:\mathrm{been}\:\mathrm{corrected}\:\mathrm{to}\:{S}=\frac{\mathrm{1}}{\mathrm{1}−{i}} \\ $$$$ \\ $$$$\mathrm{This}\:\mathrm{is}\:\mathrm{all}\:\mathrm{interesting}. \\ $$$$\mathrm{I}\:\mathrm{am}\:\mathrm{aware}\:\mathrm{of}\:{S}=\mathrm{1}−\mathrm{1}+\mathrm{1}−\mathrm{1}+... \\ $$$$\mathrm{These}\:\mathrm{kinds}\:\mathrm{if}\:\mathrm{sequences}\:\mathrm{are}\:\mathrm{interesting} \\ $$

Commented by prakash jain last updated on 27/May/17

For the sequence of the type.  a_(t+1) =na_t ,a_1 =ba_n   a_n =a_1 b^(n−1)   a_1 =ba_n   ⇒b^n =1  b^n =1=e^(2πi)   b=e^(2πki/n) , k∈{0,1,2,...,n−1}  b is n^(th)  root of unity.

$$\mathrm{For}\:\mathrm{the}\:\mathrm{sequence}\:\mathrm{of}\:\mathrm{the}\:\mathrm{type}. \\ $$$${a}_{{t}+\mathrm{1}} ={na}_{{t}} ,{a}_{\mathrm{1}} ={ba}_{{n}} \\ $$$${a}_{{n}} ={a}_{\mathrm{1}} {b}^{{n}−\mathrm{1}} \\ $$$${a}_{\mathrm{1}} ={ba}_{{n}} \\ $$$$\Rightarrow{b}^{{n}} =\mathrm{1} \\ $$$${b}^{{n}} =\mathrm{1}={e}^{\mathrm{2}\pi{i}} \\ $$$${b}={e}^{\mathrm{2}\pi{ki}/{n}} ,\:{k}\in\left\{\mathrm{0},\mathrm{1},\mathrm{2},...,{n}−\mathrm{1}\right\} \\ $$$${b}\:\mathrm{is}\:{n}^{{th}} \:\mathrm{root}\:\mathrm{of}\:\mathrm{unity}. \\ $$

Commented by ajfour last updated on 27/May/17

if   S=1−1+1−1+...  then even we have a formula  for S_n :  S_n =(1/2)(1−i^(2n) ) .

$${if}\:\:\:\mathrm{S}=\mathrm{1}−\mathrm{1}+\mathrm{1}−\mathrm{1}+... \\ $$$${then}\:{even}\:{we}\:{have}\:{a}\:{formula} \\ $$$${for}\:\mathrm{S}_{{n}} : \\ $$$${S}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−{i}^{\mathrm{2}{n}} \right)\:. \\ $$

Commented by prakash jain last updated on 27/May/17

(1/(1−i))=((1+i)/2) is correct.   This value is correct with analytic  continuation. This series itself  is divergent.  S=1+2+2^2 +....  S=1+2(1+2+2^2 +..)  S=−1.  S=−1 is derived from analytical  continuation of f(x)=(1/(1−x))  =1+x+x^2 +...

$$\frac{\mathrm{1}}{\mathrm{1}−{i}}=\frac{\mathrm{1}+{i}}{\mathrm{2}}\:\mathrm{is}\:\mathrm{correct}.\: \\ $$$$\mathrm{This}\:\mathrm{value}\:\mathrm{is}\:\mathrm{correct}\:\mathrm{with}\:\mathrm{analytic} \\ $$$$\mathrm{continuation}.\:\mathrm{This}\:\mathrm{series}\:\mathrm{itself} \\ $$$$\mathrm{is}\:\mathrm{divergent}. \\ $$$$\mathrm{S}=\mathrm{1}+\mathrm{2}+\mathrm{2}^{\mathrm{2}} +.... \\ $$$$\mathrm{S}=\mathrm{1}+\mathrm{2}\left(\mathrm{1}+\mathrm{2}+\mathrm{2}^{\mathrm{2}} +..\right) \\ $$$$\mathrm{S}=−\mathrm{1}. \\ $$$$\mathrm{S}=−\mathrm{1}\:\mathrm{is}\:\mathrm{derived}\:\mathrm{from}\:\mathrm{analytical} \\ $$$$\mathrm{continuation}\:\mathrm{of}\:{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$$$=\mathrm{1}+{x}+{x}^{\mathrm{2}} +... \\ $$

Commented by ajfour last updated on 27/May/17

incomprehensible indeed !

$${incomprehensible}\:{indeed}\:! \\ $$

Commented by prakash jain last updated on 27/May/17

Analytical continuation is interesting  for example using analytical  continuation it can be proved  that  1+2+3+4+...to infinity=−(1/(12))

$$\mathrm{Analytical}\:\mathrm{continuation}\:\mathrm{is}\:\mathrm{interesting} \\ $$$$\mathrm{for}\:\mathrm{example}\:\mathrm{using}\:\mathrm{analytical} \\ $$$$\mathrm{continuation}\:\mathrm{it}\:\mathrm{can}\:\mathrm{be}\:\mathrm{proved} \\ $$$$\mathrm{that} \\ $$$$\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+...\mathrm{to}\:\mathrm{infinity}=−\frac{\mathrm{1}}{\mathrm{12}} \\ $$

Commented by FilupS last updated on 27/May/17

Yeah, i know a bit about the topic.  I don′t really see ′how′ half of the solutions  are logical, but i love it

$$\mathrm{Yeah},\:\mathrm{i}\:\mathrm{know}\:\mathrm{a}\:\mathrm{bit}\:\mathrm{about}\:\mathrm{the}\:\mathrm{topic}. \\ $$$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{really}\:\mathrm{see}\:'{how}'\:\mathrm{half}\:\mathrm{of}\:\mathrm{the}\:\mathrm{solutions} \\ $$$$\mathrm{are}\:\mathrm{logical},\:\mathrm{but}\:\mathrm{i}\:\mathrm{love}\:\mathrm{it} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com