Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 140684 by qaz last updated on 11/May/21

∫_0 ^π cos^n (x)∙cos (nx)dx=(π/2^n )

$$\int_{\mathrm{0}} ^{\pi} \mathrm{cos}\:^{{n}} \left({x}\right)\centerdot\mathrm{cos}\:\left({nx}\right){dx}=\frac{\pi}{\mathrm{2}^{{n}} } \\ $$

Answered by mnjuly1970 last updated on 11/May/21

 𝛗:=Re((1/2) ∫_0 ^( 2π)  cos^n (x)e^(in(x)) dx)       :=Re((1/2)∫_0 ^( 2π) (((e^(ix) +e^(−ix) )/2))^n e^(inx) dx)       :=^(z:=e^(ix) ) Re∫_(C:∣z∣=1) (1/2^n )(((z+z^(−1) )/1))^n z^n (dz/(iz))       :=Re (1/2)∫_(C:∣z∣=1) (1/2^n )(((z^2 +1)/1))^n (dz/(iz))=2π(1/2^(n+1) )(1)=(π/2^n )

$$\:\boldsymbol{\phi}:={Re}\left(\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \:{cos}^{{n}} \left({x}\right){e}^{{in}\left({x}\right)} {dx}\right) \\ $$$$\:\:\:\:\::={Re}\left(\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \left(\frac{{e}^{{ix}} +{e}^{−{ix}} }{\mathrm{2}}\right)^{{n}} {e}^{{inx}} {dx}\right) \\ $$$$\:\:\:\:\::\overset{{z}:={e}^{{ix}} } {=}{Re}\int_{{C}:\mid{z}\mid=\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}^{{n}} }\left(\frac{{z}+{z}^{−\mathrm{1}} }{\mathrm{1}}\right)^{{n}} {z}^{{n}} \frac{{dz}}{{iz}} \\ $$$$\:\:\:\:\::={Re}\:\frac{\mathrm{1}}{\mathrm{2}}\int_{{C}:\mid{z}\mid=\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}^{{n}} }\left(\frac{{z}^{\mathrm{2}} +\mathrm{1}}{\mathrm{1}}\right)^{{n}} \frac{{dz}}{{iz}}=\mathrm{2}\pi\frac{\mathrm{1}}{\mathrm{2}^{{n}+\mathrm{1}} }\left(\mathrm{1}\right)=\frac{\pi}{\mathrm{2}^{{n}} } \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 11/May/21

thanks a lot sir qaz  grateful...

$${thanks}\:{a}\:{lot}\:{sir}\:{qaz} \\ $$$${grateful}... \\ $$

Commented by qaz last updated on 11/May/21

nice solution Sir.I also don′t like induction...

$${nice}\:{solution}\:{Sir}.{I}\:{also}\:{don}'{t}\:{like}\:{induction}... \\ $$

Answered by mathmax by abdo last updated on 11/May/21

A_n =∫_0 ^π  cos^n x .cos(nx)dx ⇒A_n =Re(∫_0 ^π  cos^n x e^(inx)  dx) but  ∫_0 ^π  cos^n x e^(inx)  dx =∫_0 ^π  (((e^(ix)  +e^(−ix) )/2))^n  e^(inx)  dx  =(1/2^n ) ∫_0 ^π  e^(inx)  Σ_(k=0) ^n C_n ^k  (e^(ix) )^k  (e^(−ix) )^(n−k)  dx  =(1/2^n )Σ_(k=0) ^n  ∫_0 ^π C_n ^k  e^(inx)  e^(ikx)  .e^(−inx)  e^(ikx)  dx  =(1/2^n )Σ_(k=0) ^n  C_n ^k ∫_0 ^π  e^(2ikx)  dx =(π/2^n ) +(1/2^n )Σ_(k=1) ^n  C_n ^k  [(1/(2ik))e^(2ikx) ]_0 ^π   =(π/2^n ) +0 =(π/2^n )

$$\mathrm{A}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\pi} \:\mathrm{cos}^{\mathrm{n}} \mathrm{x}\:.\mathrm{cos}\left(\mathrm{nx}\right)\mathrm{dx}\:\Rightarrow\mathrm{A}_{\mathrm{n}} =\mathrm{Re}\left(\int_{\mathrm{0}} ^{\pi} \:\mathrm{cos}^{\mathrm{n}} \mathrm{x}\:\mathrm{e}^{\mathrm{inx}} \:\mathrm{dx}\right)\:\mathrm{but} \\ $$$$\int_{\mathrm{0}} ^{\pi} \:\mathrm{cos}^{\mathrm{n}} \mathrm{x}\:\mathrm{e}^{\mathrm{inx}} \:\mathrm{dx}\:=\int_{\mathrm{0}} ^{\pi} \:\left(\frac{\mathrm{e}^{\mathrm{ix}} \:+\mathrm{e}^{−\mathrm{ix}} }{\mathrm{2}}\right)^{\mathrm{n}} \:\mathrm{e}^{\mathrm{inx}} \:\mathrm{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }\:\int_{\mathrm{0}} ^{\pi} \:\mathrm{e}^{\mathrm{inx}} \:\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} ^{\mathrm{k}} \:\left(\mathrm{e}^{\mathrm{ix}} \right)^{\mathrm{k}} \:\left(\mathrm{e}^{−\mathrm{ix}} \right)^{\mathrm{n}−\mathrm{k}} \:\mathrm{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}} \:\int_{\mathrm{0}} ^{\pi} \mathrm{C}_{\mathrm{n}} ^{\mathrm{k}} \:\mathrm{e}^{\mathrm{inx}} \:\mathrm{e}^{\mathrm{ikx}} \:.\mathrm{e}^{−\mathrm{inx}} \:\mathrm{e}^{\mathrm{ikx}} \:\mathrm{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}} \:\mathrm{C}_{\mathrm{n}} ^{\mathrm{k}} \int_{\mathrm{0}} ^{\pi} \:\mathrm{e}^{\mathrm{2ikx}} \:\mathrm{dx}\:=\frac{\pi}{\mathrm{2}^{\mathrm{n}} }\:+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\mathrm{C}_{\mathrm{n}} ^{\mathrm{k}} \:\left[\frac{\mathrm{1}}{\mathrm{2ik}}\mathrm{e}^{\mathrm{2ikx}} \right]_{\mathrm{0}} ^{\pi} \\ $$$$=\frac{\pi}{\mathrm{2}^{\mathrm{n}} }\:+\mathrm{0}\:=\frac{\pi}{\mathrm{2}^{\mathrm{n}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com