Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 14119 by RasheedSindhi last updated on 28/May/17

For what values of n∈N,  ω^(1/n)  can be expressed as ω^m   where m∈Z?

$$\mathrm{For}\:\mathrm{what}\:\mathrm{values}\:\mathrm{of}\:\mathrm{n}\in\mathbb{N}, \\ $$$$\omega^{\mathrm{1}/\mathrm{n}} \:\mathrm{can}\:\mathrm{be}\:\mathrm{expressed}\:\mathrm{as}\:\omega^{\mathrm{m}} \\ $$$$\mathrm{where}\:\mathrm{m}\in\mathbb{Z}? \\ $$

Commented by prakash jain last updated on 28/May/17

ω^(1/n) =w^m   w=w^(mn)   w^3 =w^(mn+2)   1=w^(mn+2)   mn+2 needs to be multiple of 3.

$$\omega^{\mathrm{1}/{n}} ={w}^{{m}} \\ $$$${w}={w}^{{mn}} \\ $$$${w}^{\mathrm{3}} ={w}^{{mn}+\mathrm{2}} \\ $$$$\mathrm{1}={w}^{{mn}+\mathrm{2}} \\ $$$${mn}+\mathrm{2}\:\mathrm{needs}\:\mathrm{to}\:\mathrm{be}\:\mathrm{multiple}\:\mathrm{of}\:\mathrm{3}. \\ $$$$ \\ $$

Commented by RasheedSindhi last updated on 28/May/17

mn+2=3k  m=((3k−2)/n)  m∈Z⇒n∣3k−2  For what values of n,there  exists such k that                   n ∣ 3k−2  ?  For example for n=3,there  is no such k  So ω^(1/3)  can′t be expressed as ω^m .

$$\mathrm{mn}+\mathrm{2}=\mathrm{3k} \\ $$$$\mathrm{m}=\frac{\mathrm{3k}−\mathrm{2}}{\mathrm{n}} \\ $$$$\mathrm{m}\in\mathbb{Z}\Rightarrow\mathrm{n}\mid\mathrm{3k}−\mathrm{2} \\ $$$$\mathrm{For}\:\mathrm{what}\:\mathrm{values}\:\mathrm{of}\:\mathrm{n},\mathrm{there} \\ $$$$\mathrm{exists}\:\mathrm{such}\:\mathrm{k}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{n}\:\mid\:\mathrm{3k}−\mathrm{2}\:\:? \\ $$$$\mathrm{For}\:\mathrm{example}\:\mathrm{for}\:\mathrm{n}=\mathrm{3},\mathrm{there} \\ $$$$\mathrm{is}\:\mathrm{no}\:\mathrm{such}\:\mathrm{k} \\ $$$$\mathrm{So}\:\omega^{\mathrm{1}/\mathrm{3}} \:\mathrm{can}'\mathrm{t}\:\mathrm{be}\:\mathrm{expressed}\:\mathrm{as}\:\omega^{\mathrm{m}} . \\ $$

Commented by RasheedSindhi last updated on 28/May/17

According to your method  ω^(1/4) =(ω^3 ω)^(1/4) =ω  ω^(1/5) =((ω^3 )^3 ω)^(1/5) =ω^2

$$\mathrm{According}\:\mathrm{to}\:\mathrm{your}\:\mathrm{method} \\ $$$$\omega^{\mathrm{1}/\mathrm{4}} =\left(\omega^{\mathrm{3}} \omega\right)^{\mathrm{1}/\mathrm{4}} =\omega \\ $$$$\omega^{\mathrm{1}/\mathrm{5}} =\left(\left(\omega^{\mathrm{3}} \right)^{\mathrm{3}} \omega\right)^{\mathrm{1}/\mathrm{5}} =\omega^{\mathrm{2}} \\ $$$$ \\ $$

Commented by prakash jain last updated on 28/May/17

mn+2=3k  m=((3k−2)/n)  3 ∤ (3k−2)⇒n≠3j  So no m for n=3j  n=3j+1 or n=3j+2  For n=3j+1  k=(j+1)⇒3k−2=3(j+1)−2=3j+1  For n=3j+2  k=(3j+2+2j+2)  3k−2=3(3j+2)+(6j+6)−2  =3(3j+2)+(6j+4)  =5(3j+2)  Summay  n=3j⇒no solution  n=3j+1⇒k=(j+1)⇒m=1 or (3l+1)  n=3j+2⇒k=(5j+4)⇒m=5 or (3l+2)

$${mn}+\mathrm{2}=\mathrm{3}{k} \\ $$$${m}=\frac{\mathrm{3}{k}−\mathrm{2}}{{n}} \\ $$$$\mathrm{3}\:\nmid\:\left(\mathrm{3}{k}−\mathrm{2}\right)\Rightarrow{n}\neq\mathrm{3}{j} \\ $$$$\mathrm{So}\:\mathrm{no}\:{m}\:\mathrm{for}\:{n}=\mathrm{3}{j} \\ $$$${n}=\mathrm{3}{j}+\mathrm{1}\:{or}\:{n}=\mathrm{3}{j}+\mathrm{2} \\ $$$$\mathrm{For}\:{n}=\mathrm{3}{j}+\mathrm{1} \\ $$$${k}=\left({j}+\mathrm{1}\right)\Rightarrow\mathrm{3}{k}−\mathrm{2}=\mathrm{3}\left({j}+\mathrm{1}\right)−\mathrm{2}=\mathrm{3}{j}+\mathrm{1} \\ $$$$\mathrm{For}\:{n}=\mathrm{3}{j}+\mathrm{2} \\ $$$${k}=\left(\mathrm{3}{j}+\mathrm{2}+\mathrm{2}{j}+\mathrm{2}\right) \\ $$$$\mathrm{3}{k}−\mathrm{2}=\mathrm{3}\left(\mathrm{3}{j}+\mathrm{2}\right)+\left(\mathrm{6}{j}+\mathrm{6}\right)−\mathrm{2} \\ $$$$=\mathrm{3}\left(\mathrm{3}{j}+\mathrm{2}\right)+\left(\mathrm{6}{j}+\mathrm{4}\right) \\ $$$$=\mathrm{5}\left(\mathrm{3}{j}+\mathrm{2}\right) \\ $$$$\mathrm{Summay} \\ $$$${n}=\mathrm{3}{j}\Rightarrow{no}\:{solution} \\ $$$${n}=\mathrm{3}{j}+\mathrm{1}\Rightarrow{k}=\left({j}+\mathrm{1}\right)\Rightarrow{m}=\mathrm{1}\:\mathrm{or}\:\left(\mathrm{3}{l}+\mathrm{1}\right) \\ $$$${n}=\mathrm{3}{j}+\mathrm{2}\Rightarrow{k}=\left(\mathrm{5}{j}+\mathrm{4}\right)\Rightarrow{m}=\mathrm{5}\:\mathrm{or}\:\left(\mathrm{3}{l}+\mathrm{2}\right) \\ $$

Commented by RasheedSindhi last updated on 28/May/17

LOT_(of) THαnX  Sir!

$$\mathcal{LOT}_{{of}} \mathcal{TH}\alpha{n}\mathcal{X}\:\:\mathcal{S}{ir}! \\ $$

Commented by RasheedSindhi last updated on 29/May/17

TH∀NKS  Sir!   Learnt one more thing from  you.  This is something like  “Squaring both sides and  extraneous roots”.

$$\mathrm{TH}\forall\mathrm{NKS}\:\:\mathrm{Sir}! \\ $$$$\:\mathrm{Learnt}\:\mathrm{one}\:\mathrm{more}\:\mathrm{thing}\:\mathrm{from} \\ $$$$\mathrm{you}. \\ $$$$\mathrm{This}\:\mathrm{is}\:\mathrm{something}\:\mathrm{like} \\ $$$$``\mathrm{Squaring}\:\mathrm{both}\:\mathrm{sides}\:\mathrm{and} \\ $$$$\mathrm{extraneous}\:\mathrm{roots}''. \\ $$

Commented by RasheedSindhi last updated on 29/May/17

I now thought that although  for n=3j, there is a solution:   ω^(1/3j) =ω^(3/9j) =(ω^3 )^(1/9j) =1=ω^3 =ω^(3k)   Is this correct?

$$\mathrm{I}\:\mathrm{now}\:\mathrm{thought}\:\mathrm{that}\:\mathrm{although} \\ $$$$\mathrm{for}\:\mathrm{n}=\mathrm{3j},\:\mathrm{there}\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution}: \\ $$$$\:\omega^{\mathrm{1}/\mathrm{3j}} =\omega^{\mathrm{3}/\mathrm{9j}} =\left(\omega^{\mathrm{3}} \right)^{\mathrm{1}/\mathrm{9j}} =\mathrm{1}=\omega^{\mathrm{3}} =\omega^{\mathrm{3k}} \\ $$$$\mathrm{Is}\:\mathrm{this}\:\mathrm{correct}? \\ $$

Commented by prakash jain last updated on 29/May/17

w^(1/2) =w^(3/6) =(w^3 )^(1/6) =1=w^3  ?  If u notice w^(1/2)  is one of 6^(th)  root of unity.  it is not correct to say w^(1/2) =1

$${w}^{\mathrm{1}/\mathrm{2}} ={w}^{\mathrm{3}/\mathrm{6}} =\left({w}^{\mathrm{3}} \right)^{\mathrm{1}/\mathrm{6}} =\mathrm{1}={w}^{\mathrm{3}} \:? \\ $$$$\mathrm{If}\:\mathrm{u}\:\mathrm{notice}\:{w}^{\mathrm{1}/\mathrm{2}} \:\mathrm{is}\:\mathrm{one}\:\mathrm{of}\:\mathrm{6}^{\mathrm{th}} \:\mathrm{root}\:\mathrm{of}\:\mathrm{unity}. \\ $$$$\mathrm{it}\:\mathrm{is}\:\mathrm{not}\:\mathrm{correct}\:\mathrm{to}\:\mathrm{say}\:{w}^{\mathrm{1}/\mathrm{2}} =\mathrm{1} \\ $$

Commented by RasheedSindhi last updated on 29/May/17

Sir, no doubt we have reached  at wrong result. The question  is, where is the error in process?  Do we break any rule or  restriction of maths?What is  that?

$$\mathrm{Sir},\:\mathrm{no}\:\mathrm{doubt}\:\mathrm{we}\:\mathrm{have}\:\mathrm{reached} \\ $$$$\mathrm{at}\:\mathrm{wrong}\:\mathrm{result}.\:\mathrm{The}\:\mathrm{question} \\ $$$$\mathrm{is},\:\mathrm{where}\:\mathrm{is}\:\mathrm{the}\:\mathrm{error}\:\mathrm{in}\:\mathrm{process}? \\ $$$$\mathrm{Do}\:\mathrm{we}\:\mathrm{break}\:\mathrm{any}\:\mathrm{rule}\:\mathrm{or} \\ $$$$\mathrm{restriction}\:\mathrm{of}\:\mathrm{maths}?\mathrm{What}\:\mathrm{is} \\ $$$$\mathrm{that}? \\ $$

Commented by prakash jain last updated on 29/May/17

a^(1/n) =b⇏(b^n )^(1/n) =a^(1/n)   Since (b^n )^(1/n)  will give n roots of  b^n  and one of them will  be equal to  a^(1/n)  or b.

$${a}^{\mathrm{1}/{n}} ={b}\nRightarrow\left({b}^{{n}} \right)^{\mathrm{1}/{n}} ={a}^{\mathrm{1}/{n}} \\ $$$$\mathrm{Since}\:\left({b}^{{n}} \right)^{\mathrm{1}/{n}} \:\mathrm{will}\:\mathrm{give}\:{n}\:\mathrm{roots}\:\mathrm{of} \\ $$$${b}^{{n}} \:\mathrm{and}\:\mathrm{one}\:\mathrm{of}\:\mathrm{them}\:\mathrm{will}\:\:\mathrm{be}\:\mathrm{equal}\:\mathrm{to} \\ $$$${a}^{\mathrm{1}/{n}} \:\mathrm{or}\:{b}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com